
kdesrc-build Script Manual

Michael Pyne
Carlos Woelz

kdesrc-build Script Manual

2

Contents

1 Introduction 8
1.1 A brief introduction to kdesrc-build . 8

1.1.1 What is kdesrc-build? . 8
1.1.2 kdesrc-build operation ‘in a nutshell’ . 8

1.2 Documentation Overview . 9

2 Getting Started 10
2.1 Preparing the System to Build KDE . 10

2.1.1 Setup a new user account . 10

2.1.2 Ensure your system is ready to build KDE software 10

2.1.3 Setup kdesrc-build . 12

2.1.3.1 Install kdesrc-build . 12
2.1.3.2 Prepare the configuration file . 12

2.1.3.2.1 Manual setup of configuration file 12

2.2 Setting the Configuration Data . 12

2.3 Using the kdesrc-build script . 14

2.3.1 Loading project metadata . 14

2.3.2 Previewing what will happen when kdesrc-build runs 14

2.3.3 Resolving build failures . 15

2.4 Building specific modules . 16

2.5 Setting the Environment to Run Your KDEPlasma Desktop 17

2.5.1 Automatically installing a login driver . 18

2.5.1.1 Adding xsession support for distributions 18

2.5.1.2 Manually adding support for xsession 18

2.5.2 Setting up the environment manually . 19

2.6 Module Organization and selection . 19

2.6.1 KDE Software Organization . 19

2.6.2 Selecting modules to build . 19

2.6.3 Module Sets . 20
2.6.3.1 The basic module set concept . 20

2.6.3.2 Special Support for KDE module sets 21

2.6.4 The official KDE module database . 22
2.6.5 Filtering out KDE project modules . 23

2.7 Getting Started Conclusion . 23

kdesrc-build Script Manual

3 Script Features 25

3.1 Feature Overview . 25
3.2 kdesrc-build’s build logging . 26

3.2.1 Logging overview . 26

3.2.1.1 Logging directory layout . 27

4 Configuring kdesrc-build 28

4.1 Overview of kdesrc-build configuration . 28

4.1.1 Layout of the configuration file . 28

4.1.1.1 Global configuration . 28

4.1.1.2 Module configuration . 28

4.1.1.3 Processing of option values . 29

4.1.1.4 ‘options’ modules . 29

4.1.2 Including other configuration files . 30

4.1.3 Commonly used configuration options . 31

4.2 Table of available configuration options . 31

5 Command Line Options and Environment Variables 58

5.1 Command Line Usage . 58

5.1.1 Commonly used command line options . 58

5.1.2 Specifying modules to build . 59

5.2 Supported Environment Variables . 59

5.3 Supported command-line parameters . 59

5.3.1 Generic . 59
5.3.2 Resuming and stopping . 61

5.3.3 Modules information . 62
5.3.4 Exclude specific action . 63

5.3.5 Only specific action . 63

5.3.6 Build behavior . 63
5.3.7 Script runtime . 64

5.3.8 Setup . 64

5.3.9 Verbosity level . 65

5.3.10 Script information . 65

6 Using kdesrc-build 66

6.1 Preface . 66
6.2 Basic kdesrc-build features . 66

6.2.1 qt support . 66

6.2.2 Standard flags added by kdesrc-build . 67

6.2.3 Changing kdesrc-build’s build priority . 67

6.2.4 Installation as the superuser . 68

4

kdesrc-build Script Manual

6.2.5 Showing the progress of a module build . 68

6.3 Advanced features . 68
6.3.1 Partially building a module . 68

6.3.1.1 Removing directories from a build 69

6.3.2 Branching and tagging support for kdesrc-build 69

6.3.2.1 What are branches and tags? . 69

6.3.2.2 How to use branches and tags . 69

6.3.3 Stopping the build early . 70

6.3.3.1 The build normally continues even if failures occur 70

6.3.3.2 Not stopping early with --no-stop-on-failure 70

6.3.3.3 Stopping kdesrc-build gracefully when stop-on-failure is false . . 70

6.3.4 How kdesrc-build tries to ensure a successful build 71
6.3.4.1 Automatic rebuilds . 71
6.3.4.2 Manually rebuilding a module . 71

6.3.5 Changing environment variable settings . 72

6.3.6 Resuming builds . 72

6.3.6.1 Resuming a failed or canceled build 72

6.3.6.2 Ignoring modules in a build . 72

6.3.7 Changing options from the command line 73

6.3.7.1 Changing global options . 73

6.3.7.2 Changing module options . 73

6.4 Features for KDE developers . 73

6.4.1 SSH Agent checks . 73

6.5 Other kdesrc-build features . 74
6.5.1 Changing the amount of output from kdesrc-build 74

6.5.2 Color output . 74

6.5.3 Removing unneeded directories after a build 74

7 CMake, the KDE build system 76

7.1 Introduction to CMake . 76

8 Credits And License 77

A KDE modules and source code organization 78

A.1 The ‘Module’ . 78
A.1.1 Individual modules . 78
A.1.2 Groups of related modules . 78

A.1.3 Module ‘branch groups’ . 79

B Superseded profile setup procedures 80

B.1 Setting up a KDE login profile . 80

B.1.1 Changing your startup profile settings . 80

B.1.2 Starting KDE . 81

5

kdesrc-build Script Manual

List of Tables

4.1 Global scope only options . 38

4.2 All scopes (module, module-set and global) options 56

4.3 Phase selection options . 57

4.4 Modules selection options . 57

6.1 Table of debug levels . 74

6

Abstract

kdesrc-build is a script which builds and installs KDE software directly from the KDE
project’s source code repositories.

kdesrc-build Script Manual

Chapter 1

Introduction

1.1 A brief introduction to kdesrc-build

1.1.1 What is kdesrc-build?

kdesrc-build is a script to help the KDE community install KDE software from its Git source
repositories, and continue to update that software afterwards. It is particularly intended to sup-
port those who need to supporting testing and development of KDE software, including users
testing bugfixes and developers working on new features.

The kdesrc-build script can be configured to maintain a single individual module, a full Plasma
desktop with KDE application set, or somewhere in between.

To get started, see chapter 2, or continue reading for more detail on how kdesrc-build works and
what is covered in this documentation.

1.1.2 kdesrc-build operation ‘in a nutshell’

kdesrc-build works by using the tools available to the user at the command-line, using the same
interfaces available to the user. When kdesrc-build is run, the following sequence is followed:

1. kdesrc-build reads in the command line and configuration file, to determine what to build,
compile options to use, where to install, etc.

2. kdesrc-build performs a source update for each module. The update continues until all
modules have been updated. Modules that fail to update normally do not stop the build –
you will be notified at the end which modules did not update.

3. Modules that were successfully updated are built, have their test suite run, and are then
installed. To reduce the overall time spent, kdesrc-build will by default start building the
code as soon as the first module has completed updating, and allow the remaining updates
to continue behind the scenes.

TIP
A very good overview of how KDE modules are built, including informative diagrams, is provided on an
online article discussing KDE’s Krita application. This workflow is what kdesrc-build automates for all
KDE modules.

8

https://www.kde.org/
https://git-scm.com/
https://www.davidrevoy.com/article193/guide-building-krita-on-linux-for- cats
https://www.davidrevoy.com/article193/guide-building-krita-on-linux-for- cats

kdesrc-build Script Manual

1.2 Documentation Overview

This guide is an overview to describe the following aspects of kdesrc-build operation:

• An overview of the steps required to get started.

• Notable features.

• The configuration file syntax and options.

• The command line options.

Also documented are the steps which you should perform using other tools (i.e. steps that are
not automatically performed by kdesrc-build).

9

kdesrc-build Script Manual

Chapter 2

Getting Started

In this chapter, we show how to use the kdesrc-build to checkout modules from the KDE repos-
itory and build them. We also provide a basic explanation of the KDE source code structure and
the steps you have to perform before running the script.

All topics present in this chapter are covered with even more detail in the Build from Source ar-
ticle, at the KDE Community Wiki. If you are compiling KDE for the first time, it is a good idea
to read it, or consult it as a reference source. You will find detailed information about packag-
ing tools and requirements, common compilation pitfalls and strategies and information about
running your new KDE installation.

2.1 Preparing the System to Build KDE

2.1.1 Setup a new user account

It is recommended that you use a different user account to build, install, and run your KDE
software from, since less permissions are required, and to avoid interfering with your distribu-
tion’s packages. If you already have KDE packages installed, the best choice would be to create
a different (dedicated) user to build and run the new KDE.

TIP
Leaving your system KDE untouched also allows you to have an emergency fallback in case a coding
mistake causes your latest software build to be unusable.

You can do also setup to install to a system-wide directory (e.g. /usr/src/local) if you wish.
This document does not cover this installation type, since we assume you know what you are
doing.

2.1.2 Ensure your system is ready to build KDE software

Before using the kdesrc-build script (or any other building strategy) you must install the develop-
ment tools and libraries needed for KDE. The nearly complete list of required tools can be found
from the KDE Community Wiki Build Requirements page.

Here is a list of some of the things you will need:

10

https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source
https://community.kde.org/
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source#Install_required_devel_packages

kdesrc-build Script Manual

• You will need CMake, this software is what KDE uses to handle build-time configuration of
the source code and generation of the specific build commands for your system. The required
version will vary depending on what versions of KDE software you are building (see Tech-
Base for specifics), but with modern distributions the CMake included with your distribution
should be quite sufficient.

• You must also install the source control clients needed to checkout the KDE source code. This
means you need at least the following:

– The Git source control manager, which is used for all KDE source code
– Although it is not required, the Bazaar source control manager is used for a single module

(libdbusmenu-qt) that is required for the KDE libraries. Most users can install this library
through their distribution packages but kdesrc-build supports building it as well if you de-
sire. But to build libdbusmenu-qt, you must have Bazaar installed.

• The Perl scripting language is required for kdesrc-build, some KDE repositories, and Qt™ (if
you build that from source).
The Perl that comes with your distribution should be suitable (it needs to be at least Perl
5.14), but you will also need some additional modules (kdesrc-build will warn if they are not
present):

– IO::Socket::SSL
– JSON::PP or JSON::XS
– YAML::PP, YAML::XS, or YAML::Syck

• You will need a full C++ development environment (compiler, standard library, runtime, and
any required development packages). The minimum required versions vary based on the KDE
module: the KDE Frameworks 5 collection supports the oldest compilers, while KDE Plasma
5 and KDE Applications tend to require more recent compilers.
The GCC 4.8 or Clang 4 compilers are the minimum recommended. Many distributions sup-
port easily installing these tools using a ‘build-essentials’ package, an option to install ˝build
dependencies˝ with Qt™, or similar features. The KDE Community Wiki has a page tracking
recommended packages for major distributions.

• You will need a build tool that actually performs the compilation steps (as generated by
CMake). GNU Make is recommended and should be available through your package man-
ager. CMake does support others options, such as the Ninja build tool, which can be used by
kdesrc-build using the custom-build-command configuration file option.

• Finally, you will need the appropriate Qt™ libraries (including development packages) for the
version of KDE software you are building. kdesrc-build does not officially support building
Qt™ 5 (the current major version), so it is recommended to use your distribution’s develop-
ment packages or to see the KDE Community wiki page on self-building Qt 5.

NOTE
Most operating system distributions include a method of easily installing required development tools.
Consult the Community Wiki page Required devel packages to see if these instructions are already
available.

IMPORTANT
Some of these packages are divided into libraries (or programs or utilities), and development packages.
You will need at least the program or library and its development package.

11

https://git-scm.com/
 https://commits.kde.org/
http://bazaar.canonical.com/
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source/Install_the_dependencies
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source/Install_the_dependencies
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source/OwnQt5
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source#Install_required_devel_packages

kdesrc-build Script Manual

2.1.3 Setup kdesrc-build

2.1.3.1 Install kdesrc-build

The KDE developers make frequent changes to kdesrc-build to keep it in sync with advances
in KDE development, including improvements to the recommended kdesrc-build configuration,
added modules, improving CMake flags, etc.

Because of this, we recommend obtaining kdesrc-build directly from its source repository and
then periodically updating it.

You can obtain kdesrc-build from its source repository by running:

$ git clone https://invent.kde.org/sdk/kdesrc -build.git ~/kdesrc -build

Replace ~/kdesrc-build with the directory you would like to install to.

You can update kdesrc-build later by running:

$ cd ~/kdesrc -build
$ git pull

TIP
We recommend adding the kdesrc-build installation directory to your PATH environment variable, so
that you can run kdesrc-build without having to fully specify its path every time.

2.1.3.2 Prepare the configuration file

kdesrc-build uses a configuration file to control which modules are built, where they are installed
to, etc. This file is located at ~/.config/kdesrc-buildrc ($XDG_CONFIG_HOME/kdesrc-buildrc, if
$XDG_CONFIG_HOME is set).

You can use kdesrc-build --generate-config in order to prepare a simple kdesrc-build configura-
tion. You can then edit the ~/.config/kdesrc-buildrc configuration file to make any changes
you see fit.

2.1.3.2.1 Manual setup of configuration file

You can also setup your configuration file manually, by copying the included sample configu-
ration file kdesrc-buildrc-kf5-sample to ~/.config/kdesrc-buildrc and then editing the file.
chapter 4 will be a useful reference for this, especially its table of configuration options.

kdesrc-build contains many recommended configuration files to support KDE Frameworks 5,
Plasma 5, and other KDE applications. See Section 4.1.2 for information on how to use other
configuration files from your own kdesrc-buildrc.

You can find more information about the syntax of the configuration file in Section 2.2 and in
chapter 4.

2.2 Setting the Configuration Data

To use kdesrc-build, you should have a file in your ~/.config (or in $XDG_CONFIG_HOME, if set)
directory called kdesrc-buildrc, which sets the general options and specifies the modules you
would like to download and build.

12

kdesrc-build Script Manual

NOTE
It is possible to use different configuration files for kdesrc-build, which is described in chapter 4. If you
need to use multiple configurations, please see that section. Here, we will assume that the configura-
tion is stored in ~/.config/kdesrc-buildrc.

The easiest way to proceed is to use the kdesrc-buildrc-kf5-sample file as a template, changing
global options to match your wants, and also change the list of modules you want to build.

The default settings should be appropriate to perform a KDE build. Some settings that you may
wish to alter include:

• install-dir, which changes the destination directory that your KDE software is installed to. This
defaults to ~/kde/usr, which is a single-user installation.

• branch-group, which can be used to choose the appropriate branch of development for the
KDE modules as a whole. There are many supported build configurations but you will likely
want to choose kf5-qt5 so that kdesrc-build downloads the latest code based on Qt™ 5 and
KDE Frameworks 5.

TIP
kdesrc-build will use a default branch group if you do not choose one, but this default will change
over time, so it’s better to choose one so that the branch group does not change unexpectedly.

• source-dir, to control the directory kdesrc-build uses for downloading the source code, running
the build process, and saving logs. This defaults to ~/kde/src.

• cmake-options, which sets the options to pass to the CMake command when building each
module. Typically this is used to set between ‘debug’ or ‘release’ builds, to enable (or disable)
optional features, or to pass information to the build process about the location of required
libraries.

• make-options, which sets the options used when actually running the make command to build
each module (once CMake has established the build system).
The most typical option is -jN, where N should be replaced with the maximum number of
compile jobs you wish to allow. A higher number (up to the number of logical CPUs your
system has available) leads to quicker builds, but requires more system resources.

TIP
kdesrc-build sets the option num-cores to the detected number of available processing cores. You
can use this value in your own configuration file to avoid having to set it manually.

13

kdesrc-build Script Manual

Example 2.1 Configuring Make to use all available CPUs, with exceptions

global
This environment variable is automatically used by make , including
make commands not run by kdesrc -build directly , such as Qt’s ←↩

configure
set-env MAKEFLAGS -j${num-cores}
…

end global

…

module -set big-module -set
repository kde-projects
use-modules calligra
make -options -j2 # Reduced number of build jobs for just these modules

end module -set

NOTE
Some very large Git repositories may swamp your system if you try to compile with a too many build
jobs at one time, especially repositories like the Qt™ WebKit and Qt™ WebEngine repositories. To
maintain system interactivity you may have to reduce the number of build jobs for specific modules.
Example 2.1 gives an example of how to do this.

You may want to select different modules to build, which is described in Section 2.6.2.

2.3 Using the kdesrc-build script

With the configuration data established, now you are ready to run the script. Even if you still
have some tweaking or other reading you wish to do, it is a good idea to at least load the KDE
project metadata.

2.3.1 Loading project metadata

From a terminal window, log in to the user you are using to compile KDE software and execute
the script:

% kdesrc -build --metadata -only

This command will setup the source directory and connect to the KDE Git repositories to down-
load the database of KDE git repositories, and the database of dependency metadata, without
making any further changes. It is useful to run this separately as this metadata is useful for other
kdesrc-build commands.

2.3.2 Previewing what will happen when kdesrc-build runs

With the project metadata installed, it is possible to preview what kdesrc-build will do when
launched. This can be done with the --pretend command line option.

% ./kdesrc -build --pretend

14

kdesrc-build Script Manual

You should see a message saying that some packages were successfully built (although nothing
was actually built). If there were no significant problems shown, you can proceed to actually
running the script.

% kdesrc -build

This command will download the appropriate source code, build and install each module in
order. Afterwards, you should see output similar to that in Example 2.2:

Example 2.2 Example output of a kdesrc-build run

% kdesrc -build
Updating kde-build -metadata (to branch master)
Updating sysadmin -repo -metadata (to branch master)

Building libdbusmenu -qt (1/200)
No changes to libdbusmenu -qt source , proceeding to build.
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

Building taglib (2/200)
Updating taglib (to branch master)
Source update complete for taglib: 68 files affected.
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

Building extra -cmake -modules from <module -set at line 32> (3/200)
Updating extra -cmake -modules (to branch master)
Source update complete for extra -cmake -modules: 2 files affected.
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

...

Building kdevelop from kdev (200/200)
Updating kdevelop (to branch master)
Source update complete for kdevelop: 29 files affected.
Compiling... succeeded (after 1 minute , and 34 seconds)
Installing.. succeeded (after 2 seconds)

<<< PACKAGES SUCCESSFULLY BUILT >>>
Built 200 modules

Your logs are saved in /home/kde-src/kdesrc/log/2018-01-20-07

2.3.3 Resolving build failures

Depending on how many modules you are downloading, it is possible that kdesrc-build will not
succeed the first time you compile KDE software. Do not despair!

kdesrc-build logs the output of every command it runs. By default, the log files are kept in ~/kde
src/log. To see what the caused an error for a module in the last kdesrc-build command, usually
it is sufficient to look at ~/kdesrc/log/latest/ module-name /error.log.

15

kdesrc-build Script Manual

TIP
Perhaps the easiest way to find out what error caused a module to fail to build is to search backward
with a case-insensitive search, starting from the end of the file looking for the word error. Once that
is found, scroll up to make sure there are no other error messages nearby. The first error message in
a group is usually the underlying problem.

In that file, you will see the error that caused the build to fail for that module. If the file says
(at the bottom) that you are missing some packages, try installing the package (including any
appropriate -dev packages) before trying to build that module again. Make sure that when you
run kdesrc-build again to pass the --reconfigure option so that kdesrc-build forces the module to
check for the missing packages again.

Or, if the error appears to be a build error (such as a syntax error, ‘incorrect prototype’, ‘un-
known type’, or similar) then it is probably an error with the KDE source, which will hopefully
be resolved within a few days. If it is not resolved within that time, feel free to mail the kde-
devel@kde.org mailing list (subscription may be required first) in order to report the build fail-
ure.
You can find more common examples of things that can go wrong and their solutions, as well as
general tips and strategies to build KDE software in the Build from Source.

On the other hand, assuming everything went well, you should have a new KDE install on your
computer, and now it is simply a matter of running it, described next in Section 2.5.

NOTE
For more information about kdesrc-build’s logging features, please see Section 3.2.

2.4 Building specific modules

Rather than building every module all the time, you may only want to build a single module, or
other small subset. Rather than editing your configuration file, you can simply pass the names of
modules or module sets to build to the command line.

16

mailto:kde-devel@kde.org
mailto:kde-devel@kde.org
https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source

kdesrc-build Script Manual

Example 2.3 Example output of a kdesrc-build specific module build

% kdesrc -build --include -dependencies dolphin
Updating kde-build -metadata (to branch master)
Updating sysadmin -repo -metadata (to branch master)

Building extra -cmake -modules from frameworks -set (1/79)
Updating extra -cmake -modules (to branch master)
No changes to extra -cmake -modules source , proceeding to build.
Running cmake...
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

Building phonon from phonon (2/79)
Updating phonon (to branch master)
No changes to phonon source , proceeding to build.
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

Building attica from frameworks -set (3/79)
Updating attica (to branch master)
No changes to attica source , proceeding to build.
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

...

Building dolphin from base -apps (79/79)
Updating dolphin (to branch master)
No changes to dolphin source , proceeding to build.
Compiling... succeeded (after 0 seconds)
Installing.. succeeded (after 0 seconds)

<<< PACKAGES SUCCESSFULLY BUILT >>>
Built 79 modules

Your logs are saved in /home/kde-src/kdesrc/log/2018-01-20-07

In this case, although only the dolphin application was specified, the --include-dependencies
flag caused kdesrc-build to include the dependencies listed for dolphin (by setting the include-
dependencies option).

NOTE
The dependency resolution worked in this case only because dolphin happened to be specified in a
kde-projects-based module set (in this example, named base-apps). See Section 2.6.3.2.

2.5 Setting the Environment to Run Your KDEPlasma Desktop

Assuming you are using a dedicated user to build KDE Plasma, and you already have an installed
Plasma version, running your new Plasma may be a bit tricky, as the new Plasma has to take
precedence over the old. You must change the environment variables of your login scripts to
make sure the newly-built desktop is used.

17

kdesrc-build Script Manual

2.5.1 Automatically installing a login driver

Starting from version 1.16, kdesrc-build will try to install an appropriate login driver, that will
allow you to login to your kdesrc-build-built KDE desktop from your login manager. This can be
disabled by using the install-session-driver configuration file option.

NOTE
Session setup does not occur while kdesrc-build is running in pretend mode.

This driver works by setting up a custom ‘xsession’ session type. This type of session should
work by default with the sddm login manager (where it appears as a ‘Custom’ session), but other
login managers (such as LightDM and gdm) may require additional files installed to enable xses
sion support.

2.5.1.1 Adding xsession support for distributions

The default login managers for some distributions may require additional packages to be in-
stalled in order to support xsession logins.

• The Fedora Linux® distribution requires the xorg-x11-xinit-session package to be installed
for custom xsession login support.

• Debian and Debian-derived Linux® distributions should support custom xsession logins, but
require the allow-user-xsession option to be set in /etc/X11/Xsession.options. See also the
Debian documentation on customizing the X session.

• For other distributions, go to Section 2.5.1.2.

2.5.1.2 Manually adding support for xsession

If there were no distribution-specific directions for your distribution in Section 2.5.1.1, you can
manually add a ‘Custom xsession login’ entry to your distribution’s list of session types as fol-
lows:

NOTE
This procedure will likely require administrative privileges to complete.

1. Create the file /usr/share/xsessions/kdesrc-build.desktop.

2. Ensure the file just created has the following text:

Type=XSession
Exec=$HOME/.xsession
Name=KDE Plasma Desktop (unstable; kdesrc-build)v1 The $HOME entry must be replaced by the full path to your home directory (example,

/home/ user). The desktop entry specification does not allow for user-generic files.

3. When the login manager is restarted, it should show a new session type, ‘KDE Plasma
Desktop (unstable; kdesrc-build)’ in its list of sessions, which should try to run the .xsess
ion file installed by kdesrc-build if it is selected when you login.

NOTE
It may be easiest to restart the computer to restart the login manager, if the login manager does
not track updates to the /usr/share/xsessions directory.

18

https://getfedora.org/
https://www.debian.org/
https://www.debian.org/doc/manuals/debian-reference/ch07.en.html#_customizing_the_x_session_classic_method

kdesrc-build Script Manual

2.5.2 Setting up the environment manually

This documentation used to include instruction on which environment variables to set in order
to load up the newly-built desktop. These instructions have been moved to an appendix (Section
B.1).

If you intend to setup your own login support you can consult that appendix or view the kde-en
v-master.sh.in file included with the kdesrc-build source.

2.6 Module Organization and selection

2.6.1 KDE Software Organization

KDE software is split into different components, many of which can be built by kdesrc-build.
Understanding this organization will help you properly select the software modules that you
want built.

1. At the lowest level comes the Qt™ library, which is a very powerful, cross-platform ‘toolkit’
library. KDE is based on Qt™, and some of the non-KDE libraries required by KDE are also
based on Qt™. kdesrc-build can build Qt™, or use the one already installed on your system
if it is a recent enough version.

2. On top of Qt™ are required libraries that are necessary for KDE software to work. Some
of these libraries are not considered part of KDE itself due to their generic nature, but are
still essential to the KDE Platform. These libraries are collected under a kdesupport module
grouping but are not considered part of the ‘Frameworks’ libraries.

3. On top of these essential libraries come the KDE Frameworks, sometimes abbreviated as
KF5, which are essential libraries for the KDE Plasma desktop, KDE Applications, and other
third-party software.

4. On top of the Frameworks, come several different things:

• ‘Third-party’ applications. These are applications that use the KDE Frameworks or are
designed to run under KDE Plasma but are not authored by or in association with the
KDE project.

• Plasma, which is a full ‘workspace’ desktop environment. This is what users normally
see when they ‘log-in to KDE’.

• The KDE Application suite. This is a collection of useful software included with the
Platform and Plasma Desktop, grouped into individual modules, including utilities like
Dolphin, games like KSudoku, and productivity software released by KDE such as Kon-
tact.

• Finally, there is a collection of software (also collected in modules) whose development
is supported by KDE resources (such as translation, source control, bug tracking, etc.)
but is not released by KDE as part of Plasma or the Application suite. These modules are
known as ‘Extragear’.

2.6.2 Selecting modules to build

Selecting which of the possible modules to build is controlled by the configuration file. After
the global section is a list of modules to build, bracketed by module ... end module lines. An
example entry for a module is shown in Example 2.4.

19

https://community.kde.org/Frameworks

kdesrc-build Script Manual

Example 2.4 Example module entry in the configuration file

module kdesrc -build -git
Options for this module go here , example:
repository kde:kdesrc -build
make -options -j4 # Run 4 compiles at a time

end module

NOTE
In practice, this module construct is not usually used directly. Instead most modules are specified via
module-sets as described below.

When using only module entries, kdesrc-build builds them in the order you list, and does not
attempt to download any other repositories other than what you specify directly.

2.6.3 Module Sets

The KDE source code is decomposed into a great number of relatively small Git-based repos-
itories. To make it easier to manage the large number of repositories involved in any useful
KDE-based install, kdesrc-build supports grouping multiple modules and treating the group as
a ‘module set’.

2.6.3.1 The basic module set concept

By using a module set, you can quickly declare many Git modules to be downloaded and built, as
if you’d typed out a separate module declaration for each one. The repository option is handled
specially to setup where each module is downloaded from, and every other option contained in
the module set is copied to every module generated in this fashion.

Example 2.5 Using module sets

global
git-repository -base kde-git kde:

end global

module qt
Options removed for brevity

end module

module -set kde-support -libs
repository kde-git
use-modules automoc attica akonadi

end module -set

Other modules as necessary...
module kdesupport
end module

In Example 2.5 a brief module set is shown. When kdesrc-build encounters this module set, it acts
as if, for every module given in use-modules, that an individual module has been declared, with

20

kdesrc-build Script Manual

its repository equal to the module-set’s repository followed immediately by the given module
name.
In addition, other options can be passed in a module set, which are copied to every new module
that is created this way. By using module-set it is possible to quickly declare many Git modules
that are all based on the same repository URL. In addition, it is possible to give module-sets a
name (as shown in the example), which allows you to quickly refer to the entire group of modules
from the command line.

2.6.3.2 Special Support for KDE module sets

The module set support described so far is general to any Git-based modules. For the KDE Git
repositories, kdesrc-build includes additional features to make things easier for users and devel-
opers. This support is enabled by specifying kde-projects as the repository for the module
set.
kdesrc-build normally only builds the modules you have listed in your configuration file, in
the order you list them. But with a kde-projects module set, kdesrc-build can do dependency
resolution of KDE-specific modules, and in addition automatically include modules into the build
even if only indirectly specified.

Example 2.6 Using kde-projects module sets

Only adds a module for juk (the kde/kdemultimedia/juk repo)
module -set juk-set

repository kde-projects
use-modules juk

end module -set

Adds all modules that are in kde/multimedia/*, including juk,
but no other dependencies
module -set multimedia -set

repository kde-projects
use-modules kde/multimedia

end module -set

Adds all modules that are in kde/multimedia/*, and all kde-projects
dependencies from outside of kde/kdemultimedia
module -set multimedia -deps -set

repository kde-projects
use-modules kde/multimedia
include -dependencies true

end module -set

All modules created out of these three module sets are automatically put ←↩
in

proper dependency order , regardless of the setting for include - ←↩
dependencies

TIP
This kde-projects module set construct is the main method of declaring which modules you want to
build.

All module sets use the repository and use-modules options. kde-projects module sets have a
predefined repository value, but other types of module sets also will use the git-repository-base
option.

21

kdesrc-build Script Manual

2.6.4 The official KDE module database

KDE’s Git repositories allow for grouping related Git modules into collections of related modules
(e.g. kdegraphics). Git doesn’t recognize these groupings, but kdesrc-build can understand these
groups, using module sets with a repository option set to ‘kde-projects’.

kdesrc-build will recognize that the kde-projects repository requires special handling, and ad-
just the build process appropriately. Among other things, kdesrc-build will:

• Download the latest module database from the KDE git archive.

• Try to find a module with the name given in the module set’s use-modules setting in that
database.

• For every module that is found, kdesrc-build will lookup the appropriate repository in the
database, based upon the branch-group setting in effect. If a repository exists and is active for
the branch group, kdesrc-build will automatically use that to download or update the source
code.

NOTE
In the current database, some module groups not only have a collection of modules, but they also
declare their own Git repository. In these situations kdesrc-build will currently prefer the group’s Git
repository instead of including the childrens’ repositories.

The following example shows how to use the KDE module database to install the Phonon multi-
media library.

module -set media -support
This option must be kde-projects to use the module database.
repository kde-projects

This option chooses what modules to look for in the database.
use-modules phonon/phonon phonon -gstreamer phonon -vlc

end module -set

TIP
phonon/phonon is used since (with the current project database) kdesrc-build would otherwise have
to decide between the group of projects called ‘phonon’ or the individual project named ‘phonon’.
Currently kdesrc-build would pick the former, which would build many more backends than needed.

The following example is perhaps more realistic, and shows a feature only available with the KDE
module database: Building all of the KDE graphics applications with only a single declaration.

module -set kdegraphics
This option must be kde-projects to use the module database.
repository kde-projects

This option chooses what modules to look for in the database.
use-modules kdegraphics/libs kdegraphics/*

end module -set

There are two important abilities demonstrated here:

22

 https://commits.kde.org/

kdesrc-build Script Manual

1. kdesrc-build allows you to specify modules that are descendents of a given module, with-
out building the parent module, by using the syntax module-name /*. It is actually re-
quired in this case since the base module, kdegraphics, is marked as inactive so that it is
not accidentally built along with its children modules. Specifying the descendent modules
allows kdesrc-build to skip around the disabled module.

2. kdesrc-build will also not add a given module to the build list more than once. This allows
us to manually set kdegraphics/libs to build first, before the rest of kdegraphics, without
trying to build kdegraphics/libs twice. This used to be required for proper dependency
handling, and today remains a fallback option in case the KDE project database is missing
dependency metadata.

2.6.5 Filtering out KDE project modules

You might decide that you’d like to build all programs within a KDE module grouping except for
a given program.

For instance, the kdeutils group includes a program named kremotecontrol. If your computer
does not have the proper hardware to receive the signals sent by remote controls then you may
decide that you’d rather not download, build, and install kremotecontrol every time you update
kdeutils.
You can achieve this by using the ignore-modules configuration option. On the command line the
--ignore-modules option does the same thing, but is more convenient for filtering out a module
just once.

Example 2.7 Example for ignoring a kde-project module in a group

module -set utils
repository kde-projects

This option chooses what modules to look for in the database.
use-modules kdeutils

This option "subtracts out" modules from the modules chosen by use- ←↩
modules , above.

ignore -modules kremotecontrol
end module -set

module -set graphics
repository kde-projects

This option chooses what modules to look for in the database.
use-modules extragear/graphics

This option "subtracts out" modules from the modules chosen by use- ←↩
modules , above.

In this case , *both* extragear/graphics/kipi -plugins and
extragear/graphics/kipi -plugins/kipi -plugins -docs are ignored
ignore -modules extragear/graphics/kipi -plugins

end module -set

2.7 Getting Started Conclusion

These are the major features and concepts needed to get started with kdesrc-build

23

kdesrc-build Script Manual

For additional information, you could keep reading through this documentation. In particular,
the list of command-line options and the table of configuration file options are useful references.

The KDE Community also maintains an online Wiki reference for how to build the source code,
which refers to kdesrc-build and includes tips and other guidelines on how to use the tool.

24

https://community.kde.org/Guidelines_and_HOWTOs/Build_from_source

kdesrc-build Script Manual

Chapter 3

Script Features

3.1 Feature Overview

kdesrc-build features include:

• You can ‘pretend’ to do the operations. If you pass --pretend or -p on the command line, the
script will give a verbose description of the commands it is about to execute, without actually
executing it. However if you’ve never run kdesrc-build, you would want to run the kdesrc-
build --metadata-only command first in order for --pretend to work.

TIP
For an even more verbose description of what kdesrc-build is doing, try using the --debug option.

• kdesrc-build allows you to checkout modules quickly. If the module you are checking out has
already been checked out previously, then kdesrc-build will download only commits that are
not yet on your computer.

TIP
There is generally no need for any special preparation to perform the initial checkout of a Git module,
as the entire Git repository must be downloaded anyways, so it is easy for the server to determine
what to send.

This is faster for you, and helps to ease the load on the kde.org anonymous Git servers.

• Another speedup is provided by starting the build process for a module as soon as the source
code for that module has been downloaded. (Available since version 1.6)

• Excellent support for building the Qt™ library (in case the KDE software you are trying to
build depends on a recent Qt™ not available in your distribution).

• kdesrc-build does not require a GUI present to operate. So, you can build KDE software with-
out needing a graphical environment.

• Supports setting default options for all modules (such as the compilation settings or the con-
figuration options). Such options can normally be changed for specific modules as well.
Also, kdesrc-build will add standard flags as appropriate to save you the trouble and possible
errors from typing them yourself. Nota Bene: this does not apply when a (custom) toolchain
is configured through e.g.: cmake-toolchain

25

kdesrc-build Script Manual

• kdesrc-build can checkout a specific branch or tag of a module. You can also ensure that a
specific revision is checked out of a module.

• kdesrc-build can automatically switch a source directory to checkout from a different repos-
itory, branch, or tag. This happens automatically when you change an option that changes
what the repository URL should be, but you must use the --src-only option to let kdesrc-build
know that it is acceptable to perform the switch.

• kdesrc-build can checkout only portions of a module, for those situations where you only need
one program from a large module.

• For developers: kdesrc-build will remind you if you use git+ssh:// but ssh-agent is not run-
ning, as this will lead to repeated password requests from SSH.

• Can delete the build directory of a module after its installation to save space at the expense of
future compilation time.

• The locations for the directories used by kdesrc-build are configurable (even per module).

• Can use Sudo, or a different user-specified command to install modules so that kdesrc-build
does not need to be run as the super user.

• kdesrc-build runs with reduced priority by default to allow you to still use your computer
while kdesrc-build is working.

• Has support for using KDE’s tags and branches.

• There is support for resuming a build from a given module. You can even ignore some modules
temporarily for a given build.

• kdesrc-build will show the progress of your build when using CMake, and will always time
the build process so you know after the fact how long it took.

• Comes built-in with a sane set of default options appropriate for building a base KDE single-
user installation from the anonymous source repositories.

• Tilde-expansion for your configuration options. For example, you can specify:

install -dir ~/kde/usr

• Automatically sets up a build system, with the source directory not the same as the build
directory, in order to keep the source directory pristine.

• You can specify global options to apply to every module to check out, and you can specify
options to apply to individual modules as well.

• Forced full rebuilds, by running kdesrc-build with the --refresh-build option.

• You can specify various environment values to be used during the build, including DO_NOT_CO
MPILE and CXXFLAGS.

• Command logging. Logs are dated and numbered so that you always have a log of a script
run. Also, a special symlink called latest is created to always point to the most recent log entry
in the log directory.

3.2 kdesrc-build’s build logging

3.2.1 Logging overview

Logging is a kdesrc-build feature whereby the output from every command that kdesrc-build
runs is saved to a file for examination later, if necessary. This is done because it is often necessary
to have the output of these programs when there is a build failure, because there are so many
reasons why a build can fail in the first place.

26

kdesrc-build Script Manual

3.2.1.1 Logging directory layout

The logs are always stored under the log directory. The destination of the log directory is con-
trolled by the log-dir option, which defaults to ${source-dir} /log (where ${source-dir} is the
value of the source-dir option. The in rest of this section, this value will be referred to as ${log-
dir}).

Under ${log-dir}, is a set of directories, one for every time that kdesrc-build was run. Each direc-
tory is named with the date, and the run number. For instance, the second time that kdesrc-build
is run on May 26, 2004, it would create a directory called 2004-05-26-02, where the 2004-05-26 is
for the date, and the -02 is the run number.

For your convenience, kdesrc-build will also create a link to the logs for your latest run, called
latest. So the logs for the most recent kdesrc-build run should always be under ${log-dir}
/latest.
Now, each directory for a kdesrc-build run will itself contain a set of directories, one for every
KDE module that kdesrc-build tries to build. Also, a file called build-status will be contained
in the directory, which will allow you to determine which modules built and which failed.

NOTE
If a module itself has a submodule (such as extragear/multimedia, playground/utils, or KDE/kdelibs),
then there would actually be a matching layout in the log directory. For example, the logs for
KDE/kdelibs after the last kdesrc-build run would be found in ${log-dir} /latest/KDE/kdelibs,
and not under ${log-dir} /latest/kdelibs.

In each module log directory, you will find a set of files for each operation that kdesrc-build
performs. If kdesrc-build updates a module, you may see filenames such as git-checkout-updat
e.log (for a module checkout or when updating a module that has already been checked out). If
the configure command was run, then you would expect to see a configure.log in that directory.

If an error occurred, you should be able to see an explanation of why in one of the files. To help
you determine which file contains the error, kdesrc-build will create a link from the file containing
the error (such as build-1.log to a file called error.log).

The upshot to all of this is that to see why a module failed to build after your last kdesrc-build,
the file you should look at first is ${log-dir} /latest/ module-name /error.log.

TIP
If the file error.log is empty (especially after an installation), then perhaps there was no error. Some
of the tools used by the KDE build system will sometimes mistakenly report an error when there was
none.
Also, some commands will evade kdesrc-build’s output redirection and bypass the log file in certain
circumstances (normally when performing the first Git checkout), and the error output in that case is
not in the log file but is instead at the Konsole or terminal where you ran kdesrc-build.

27

kdesrc-build Script Manual

Chapter 4

Configuring kdesrc-build

4.1 Overview of kdesrc-build configuration

To use the script, you must have a file in your home directory called .kdesrc-buildrc, which
describes the modules you would like to download and build, and any options or configuration
parameters to use for these modules.

4.1.1 Layout of the configuration file

4.1.1.1 Global configuration

The configuration file starts with the global options, specified like the following:

global
option -name option -value
[...]
end global

4.1.1.2 Module configuration

It is then followed by one or more module sections, specified in one of the following two forms:

•
module module -name
option -name option -value
[...]
end module

•
module -set module -set-name

repository kde-projects or git://host.org/path/to/repo.git
use-modules module -names

Other options may also be set
option -name option -value
[...]
end module -set

28

kdesrc-build Script Manual

IMPORTANT
Note that the second form, module sets, only works for Git-based modules.

For Git modules, module-name must be a module from the KDE Git repository (for example,
kdeartwork or kde-wallpapers).

For Git modules, the module name can be essentially whatever you’d like, as long as it does
not duplicate any other module name in the configuration. Keep in mind the source and build
directory layout will be based on the module name if you do not use the dest-dir option.

However, for Git module sets the module-names must correspond with actual git modules in the
chosen repository. See git-repository-base or use-modules for more information.

4.1.1.3 Processing of option values

In general, the entire line contents after the option-name is used as the option-value.

One modification that kdesrc-build performs is that a sequence ˝${name-of-option}˝ is re-
placed with the value of that option from the global configuration. This allows you to reference
the value of existing options, including options already set by kdesrc-build.

To see an example of this in use, see Example 2.1.

You can also introduce your own non-standard global variables for referencing them further in
the config. To do this, your option name should be prepended with underscore symbol. Example:

Example 4.1 Introducing your own global option for referencing later in config

global
_ver 6 # ← your custom variable (starting with underscore)
_kde ~/kde${_ver} # ← custom variable can contain another defined ←↩

variable
source -dir ${_kde}/src # ← note that nested variable (_kde → ←↩

_ver) is also resolved
end global

options kdepim
log-dir /custom/path/logs${_ver} # ← you can use custom variable ←↩

just like a standard
end options

4.1.1.4 ‘options’ modules

There is a final type of configuration file entry, options groups, which may be given wherever a
module or module-set may be used.

options module -name
option -name option -value
[...]
end options

An options group may have options set for it just like a module declaration, and is associated
with an existing module. Any options set these way will be used to override options set for the
associated module.

29

kdesrc-build Script Manual

IMPORTANT
The associated module name must match the name given in the options declaration. Be careful of
mis-typing the name.

This is useful to allow for declaring an entire module-set worth of modules, all using the same
options, and then using options groups to make individual changes.

options groups can also apply to named module sets. This allows expert users to use a common
configuration file (which includes module-set declarations) as a baseline, and then make changes
to the options used by those module-sets in configuration files that use the include command to
reference the base configuration.

Example 4.2 Example of using options
In this example we choose to build all modules from the KDE multimedia software grouping.
However we want to use a different version of the KMix application (perhaps for testing a bug
fix). It works as follows:

module -set kde-multimedia -set
repository kde-projects
use-modules kde/kdemultimedia
branch master

end module -set

kmix is a part of kde/kdemultimedia group , even though we never named
kmix earlier in this file , kdesrc -build will figure out the change.
options kmix

branch KDE/4.12
end options

Now when you run kdesrc-build, all of the KDE multimedia programs will be built from the
‘master’ branch of the source repository, but KMix will be built from the older ‘KDE/4.12’ branch.
By using options you didn’t have to individually list all the other KDE multimedia programs to
give them the right branch option.

NOTE
Note that this feature is only available in kdesrc-build from version 1.16, or using the development
version of kdesrc-build after 2014-01-12.

4.1.2 Including other configuration files

Within the configuration file, you may reference other files by using the include keyword with
a file, which will act as if the file referenced had been inserted into the configuration file at that
point.

For example, you could have something like this:

global
include ~/common -kdesrc -build -options

Insert specific options here.

end global

30

kdesrc-build Script Manual

NOTE
If you don’t specify the full path to the file to include, then the file will be searched for starting from the
directory containing the source file. This works recursively as well.

You can use variables in the value of include instruction:

global
_ver 6
source -dir ~/kde${_ver}/src
...
persistent -data -file ~/kde${_ver}/persistent -options.json

end global

include ~/kde6/src/kdesrc -build/data/build -include/kf${_ver}-qt${_ver}.ksb

4.1.3 Commonly used configuration options

The following is a list of commonly-used options. Click on the option to find out more about it.
To see the full list of options, see Section 4.2.

• cmake-options to define what flags to configure a module with using CMake.

• branch, to checkout from a branch instead of master.

• configure-flags to define what flags to configure Qt™ with.

• install-dir, to set the directory to install KDE to.

• make-options, to pass options to the Make program (such as number of CPUs to use).

• qt-install-dir, to set the directory to install Qt™ to.

• source-dir, to change where to download the source code to.

4.2 Table of available configuration options

Here are tables of various options, containing the following information:

• The option name

• The scope of the option: global, module or module-set. Options in module or/and module-set scope
can also be defined in options sections.

• Special comments on the purpose and usage of the option.

Option name Description

async

Type Boolean
Default value True
Available since 1.6

This option enables the asynchronous mode
of operation, where the source code update
and the build process will be performed in
parallel, instead of waiting for all of the
source code updates before starting the
build process.
Related command-line option: --async,
--no-async

31

kdesrc-build Script Manual

colorful-output

Type Boolean
Default value True

Set this option to false to disable the
colorful output of kdesrc-build. Note that
kdesrc-build will not output the color codes
to anything but a terminal (such as xterm,
Konsole, or the normal Linux® console).
Related command-line option: --color (or
--colorful-output), --no-color (or
--no-colorful-output)

disable-agent-check

Type Boolean
Default value False

If you are using SSH to download the Git
sources (such as if you are using the git+ssh
protocol), this option controls if
kdesrc-build will try and make sure that if
you are using ssh-agent, it is actually
managing some SSH identities. This is to
try and prevent SSH from asking for your
pass phrase for every module.
Related command-line option:
--disable-agent-check,
--no-disable-agent-check

32

kdesrc-build Script Manual

git-desired-protocol

Type String
Default value git
History information This option was added in kdesrc-build 1.16. Pri-

or to 20.06 this option was used to configure the
fetch URL instead of the push URL. As of 20.06
https is always used when updating KDE proje
cts.

This option only applies to modules from a
KDE project repository.
What this option actually does is configure
which network protocol to prefer when
pushing source code for these modules.
Normally the very-efficient git protocol is
used, but this may be blocked in some
networks (e.g. corporate intranets, public
Wi-Fi). An alternative protocol which is
much better supported is the https
protocol used for Internet web sites.
If you are using one of these constrained
networks you can set this option to http to
prefer https communications instead.

TIP
You may also need the http-proxy option if an
HTTP proxy is also needed for network traffic.

In any other situation you should not set
this option as the default protocol is most
efficient.

33

kdesrc-build Script Manual

git-repository-base

Type String
Available since 1.12.1

This option is used to create a short name to
reference a specific Git repository base URL
in later module set declarations, which is
useful for quickly declaring many Git
modules to build.
You must specify two things (separated by
a space): The name to assign to the base
URL, and the actual base URL itself. For
example:

global
other options
This is the common path to all anonymous Git server modules.
git-repository-base kde-git kde:

end global

Module declarations

module-set
Now you can use the alias you defined earlier, but only in a module-set.
repository kde-git
use-modules module1.git module2.git

end module-set

The module-set’s use-modules option
created two modules internally, with
kdesrc-build behaving as if it had read:

module module1
repository kde:module1.git

end module

module module2
repository kde:module2.git

end module

The kde: Git repository prefix used above
is a shortcut which will be setup by
kdesrc-build automatically. See the
TechBase URL Renaming article for more
information. Note that unlike most other
options, this option can be specified
multiple times in order to create as many
aliases as necessary.

TIP
It is not required to use this option to take adva-
ntage of module-set, this option exists to make
it easy to use the same repository across many
different module sets.

34

https://techbase.kde.org/Development/Git/Configuration#URL_Renaming

kdesrc-build Script Manual

install-environment-driver

Type Boolean
Default value True
Available since 17.08

Install a shell script that can be sourced in a
user’s profile setup scripts to easily
establish needed environment variables to
run the Plasma desktop built by
kdesrc-build.
This driver will alter the following files:

• $XDG_CONFIG_HOME/kde-env-master.sh
(normally found at
~/.config/kde-env-master.sh).

• $XDG_CONFIG_HOME/kde-env-user.sh
(normally found at
~/.config/kde-env-user.sh).

The kde-env-user.sh is optional. It is
intended for user customizations (see the
Troubleshooting and Debugging section of
the KDE UserBase for examples of
customizable settings), but these settings
can be set elsewhere by the user in their
existing profile setup scripts.
You can disable this feature by setting this
option to false, and ensuring that the
install-session-driver option is also
disabled.

TIP
kdesrc-build will not overwrite your existing fil-
es (if present) unless you also pass the --del
ete-my-settings command-line option.

Related command-line option:
--install-environment-driver,
--no-install-environment-driver

35

https://userbase.kde.org/KDE_System_Administration/Environment_Variables#Troubleshooting_and_Debugging

kdesrc-build Script Manual

install-session-driver

Type Boolean
Default value True
Available since 1.16

If enabled, kdesrc-build will try to install a
driver for the graphical login manager that
allows you to login to your
kdesrc-build-built KDE desktop.
This driver will alter the following files:

• ~/.xsession

• $XDG_CONFIG_HOME/kde-env-master.sh
(normally found at
~/.config/kde-env-master.sh).

• $XDG_CONFIG_HOME/kde-env-user.sh
(normally found at
~/.config/kde-env-user.sh).

If you maintain your own login driver then
you can disable this feature by setting this
option to false. If enabled, this feature also
enables the install-environment-driver
feature.

TIP
kdesrc-build will not overwrite your existing fil-
es (if present) unless you also pass the --del
ete-my-settings command-line option.

Related command-line option:
--install-session-driver,
--no-install-session-driver

niceness

Type Integer
Default value 10

Set this option to a number between 20 and
0. The higher the number, the lower a
priority kdesrc-build will set for itself, i.e.
the higher the number, the ˝nicer˝ the
program is.
Related command-line option: --nice (or
--niceness) value

36

kdesrc-build Script Manual

num-cores

Type Integer
Default value Depends on system
Available since 20.07

This option is defined by kdesrc-build
(when using kdesrc-build
--generate-config), set to be the number of
available CPUs (as indicated by the external
application nproc). If kdesrc-build cannot
detect the number of CPUs, this value is set
to 4.
See Example 2.1 for an example of this
option’s usage.
Related command-line option: --num-cores
value

num-cores-low-mem

Type Integer
Default value Depends on system
Available since 20.07

This option is defined by kdesrc-build
(when using kdesrc-build
--generate-config), set to be the number of
CPUs that is deemed safe for heavyweight
or other highly-intensive modules, such as
qtwebengine, to avoid running out of
memory during the build.
The typical calculation is one CPU core for
every 2 gigabytes (GiB) of total memory. At
least 1 core will be specified, and no more
than num-cores cores will be specified.
Although this option is intended to support
Qt™ modules, you can use it for your any
module in the same way that num-cores is
used.
If kdesrc-build cannot detect available
memory then this value will be set to 2.
Related command-line option:
--num-cores-low-mem value

37

kdesrc-build Script Manual

persistent-data-file

Type String
Available since 1.15

Use this option to change where
kdesrc-build stores its persistent data. The
default is to store this data in a file called
.kdesrc-build-data, placed in the same
directory as the configuration file in use. If
the global configuration file is in use, it will
be saved to
~/.local/state/kdesrc-build-data
($XDG_STATE_HOME/kdesrc-build-data, if
$XDG_STATE_HOME is set). If you have
multiple available configurations in the
same directory, you may want to manually
set this option, so that different
configurations do not end up with
conflicting persistent data.
Related command-line option:
--persistent-data-file file

ssh-identity-file

Type String
Available since 1.14.2

Set this option to control which private SSH
key file is passed to the ssh-add command
when kdesrc-build is downloading source
code from repositories that require
authentication. See also: Section 6.4.1.

use-idle-io-priority

Type Boolean
Default value False
Available since 1.12

Use lower priority for disk and other I/O,
which can significantly improve the
responsiveness of the rest of the system at
the expense of slightly longer running times
for kdesrc-build.
Related command-line option:
--use-idle-io-priority,
--no-use-idle-io-priority

use-inactive-modules

Type Boolean
Default value False

Allow kdesrc-build to also clone and pull
from repositories marked as inactive.
Related command-line option:
--use-inactive-modules,
--no-use-inactive-modules

Table 4.1: Global scope only options

Option name Description

38

kdesrc-build Script Manual

binpath

Type String
Set this option to set the environment
variable PATH while building. You cannot
override this setting in a module option.
The default value is the $PATH that is set
when the script starts. This environment
variable should include the colon-separated
paths of your development toolchain. The
paths ${install-dir}/bin and
${qt-install-dir}/bin are automatically
added. You may use the tilde (~) for any
paths you add using this option.
Related command-line option: --binpath
path

branch

Type String
Default value master

Checkout the specified branch instead of
the default branch.

NOTE
For most KDE modules you probably wish to
use the branch-group option instead and use
this option for case-by-case exceptions.

Related command-line option: --branch
value

39

kdesrc-build Script Manual

branch-group

Type String
Available since 1.16-pre2

Set this option to a general group from
which you want modules to be chosen.
For supported Git module types,
kdesrc-build will determine the actual
branch to use automatically based on rules
encoded by the KDE developers (these rules
may be viewed in the kde-build-metadata
source repository in your source directory).
After a branch is determined that branch is
used as if you had specified it yourself
using the branch option.
This is useful if you’re just trying to
maintain up-to-date on some normal
development track without having to pay
attention to all the branch name changes.
Note that if you do choose a branch
yourself, that it will override this setting.
The same is true of other specific branch
selection options such as tag.

NOTE
This option only applies to kde-projects Git
modules (the common case). See also Section
2.6.4.

Related command-line option:
--branch-group value

40

kdesrc-build Script Manual

build-dir

Type String
Default value ~/kde/build

Use this option to change the directory to
contain the built sources. There are three
different ways to use it:

1. Relative to the KDE Git source
directory (see the source-dir option).
This is the default, and is selected if
you type a directory name that does
not start with a tilde (~) or a slash (/).

2. Absolute path. If you specify a path
that begins with a /, then that path is
used directly. For example,
/tmp/kde-obj-dir/ .

3. Relative to your home directory. If
you specify a path that begins with a
~, then the path is used relative to
your home directory, analogous to the
shell’s tilde-expansion. For example,
~/builddir would set the build
directory to
/home/user-name/builddir.

Perhaps surprisingly, this option can be
changed per module.
Related command-line option: --build-dir
path

41

kdesrc-build Script Manual

build-when-unchanged

Type Boolean
Default value True

Control whether kdesrc-build always tries
to build a module that has not had any
source code updates.
If set to true, kdesrc-build always attempts
the build phase for a module, even if the
module did not have any source code
updates. With this value it will more likely
lead to a correct build.
If set to false, kdesrc-build will only
attempt to run the build phase for a module
if the module has a source code update, or
in other situations where it is likely that a
rebuild is actually required. This can save
time, especially if you run kdesrc-build
daily, or more frequently.

IMPORTANT
This feature is provided as an optimization o-
nly. Like many other optimizations, there are
trade-offs for the correctness of your installati-
on. For instance, changes to the qt or kdelibs
modules may cause a rebuild of other modu-
les to be necessary, even if the source code
doesn’t change at all.

Related command-line option:
--build-when-unchanged (or
--force-build),
--no-build-when-unchanged (or
--no-force-build)

cmake-generator

Type String
Default value Unix Makefiles

Specify which generator to use with
CMake. Currently both Ninja and Unix
Makefiles as well as extra generators based
on them like Eclipse CDT4 - Ninja are
supported. Invalid (unsupported) values
are ignored and treated as if unset.
Note that if a valid generator is also
specified through cmake-options it will
override the value for cmake-generator.
Related command-line option:
--cmake-generator value

42

kdesrc-build Script Manual

cmake-toolchain

Type String
Specify a toolchain file to use with CMake.
When a valid toolchain file is configured,
kdesrc-build will no longer set environment
variables automatically. You can use set-env,
binpath and libpath to fix up the
environment manually if your toolchain file
does not work out of the box with
kdesrc-build. Refer to the overview of
standard flags added by kdesrc-build for
more information.
Note that if a valid toolchain is also
specified through cmake-options it will
override the value for cmake-toolchain.
Related command-line option:
--cmake-toolchain value

43

kdesrc-build Script Manual

cmake-options

Type String
Appends to global options for the default
buildsystem, overrides global for other
buildsystems.
Use this option to specify what flags to pass
to CMake when creating the build system
for the module. When this is used as a
global option, it is applied to all modules
that this script builds. When used as a
module option, it is added to the end of the
global options. This allows you to specify
common CMake options in the global
section.
This option does not apply to qt (which
does not use CMake). Use configure-flags
instead.
If a valid generator is specified among the
listed options it will override the value of
cmake-generator. Invalid (unsupported)
generators are ignored and will not be
passed to CMake.
If a valid toolchain file is specified among
the listed options it will override the value
of cmake-toolchain. Invalid toolchains are
ignored and will not be passed to CMake.
Since these options are passed directly to
the CMake command line, they should be
given as they would be typed into CMake.
For example:

cmake-options -DCMAKE_BUILD_TYPE=RelWithDebInfo

Since this is a hassle, kdesrc-build takes
pains to ensure that as long as the rest of
the options are set correctly, you should be
able to leave this option blank. (In other
words, required CMake parameters are set
for you automatically)
Related command-line option:
--cmake-options value

compile-commands-export

Type Boolean
Default value True

Enables the generation of a
compile_commands.json via CMake inside
the build directory.
Related command-line option:
--compile-commands-export,
--no-compile-commands-export

44

kdesrc-build Script Manual

compile-commands-linking

Type Boolean
Default value False

Enables the creation of symbolic links from
compile_commands.json generated via
CMake inside the build directory to the
matching source directory.
Related command-line option:
--compile-commands-linking,
--no-compile-commands-linking

configure-flags

Type String
Appends to global options for the default
buildsystem, overrides global for other
buildsystems.
Use this option to specify what flags to pass
to ./configure when creating the build
system for the module. When this is used as
a global-option, it is applied to all modules
that this script builds. This option only works
for qt.
To change configuration settings for KDE
modules, see cmake-options.
Related command-line option:
--configure-flags value

custom-build-command

Type String
This option can be set to run a different
command (other than make, for example)
in order to perform the build process.
kdesrc-build should in general do the right
thing, so you should not need to set this
option. However it can be useful to use
alternate build systems.
The value of this option is used as the
command line to run, modified by the
make-options option as normal.
Related command-line option:
--custom-build-command value

45

kdesrc-build Script Manual

cxxflags

Type String
Appends to global options for the default
buildsystem, overrides global for other
buildsystems.
Use this option to specify what flags to use
for building the module. This option is
specified here instead of with
configure-flags or cmake-options because
this option will also set the environment
variable CXXFLAGS during the build process.
Note that for KDE 4 and any other modules
that use CMake, it is necessary to set the
CMAKE_BUILD_TYPE option to none
when configuring the module. This can be
done using the cmake-options option.
Related command-line option: --cxxflags
value

dest-dir

Type String
Use this option to change the name a
module is given on disk. For example, if
your module was extragear/network, you
could rename it to extragear-network using
this option. Note that although this changes
the name of the module on disk, it is not a
good idea to include directories or directory
separators in the name as this will interfere
with any build-dir or source-dir options.
Related command-line option: --dest-dir
path

do-not-compile

Type String
Use this option to select a specific set of
directories not to be built in a module
(instead of all of them). The directories not
to build should be space-separated.
Note that the sources to the programs will
still be downloaded.
For example, to disable building the
codeeditor and minimaltest directories of
the syntaxhighlighting framework, you
would add do-not-compile
codeeditor minimaltest compiling,
you would add ˝do-not-compile juk kscd˝
to your syntaxhighlighting options.
See Section 6.3.1.1 for an example.
Related command-line option:
--do-not-compile value

46

kdesrc-build Script Manual

git-user

Type String
Available since 15.09

This option is intended for KDE developers.
If set, it will be used to automatically setup
identity information for the Git source
control software for newly downloaded Git
modules (including the vast majority of
KDE modules).
Specifically, the user’s name and email
fields for each new Git repository are filled
in to the values set by this option.
The value must be specified in the form
User Name <email@example.com>.
For instance, a developer named ‘Foo
Barbaz’ with the email address
‘foo@abc.xyz’ would use:

git-user Foo Barbaz <foo@abc.xyz>

http-proxy

Type String
Available since 1.16

This option, if set, uses the specified URL as
a proxy server to use for any HTTP network
communications (for example, when
downloading the KDE project database).
In addition, kdesrc-build will try to ensure
that the tools it depends on also use that
proxy server, if possible, by setting the
http_proxy environment variable to the
indicated server, if that environment variable
is not already set.
Related command-line option: --http-proxy
value

47

kdesrc-build Script Manual

directory-layout

Type String
Valid values flat, invent, metadata
Default value flat

This option is used to configure the layout
which kdesrc-build should use when
creating source and build directories.
The flat layout will group all modules
directly underneath the top level source
and build directories. For example,
source/extragear/network/telepathy/ktp
-text-ui in the metadata layout would be
source/ktp-text-ui using the flat layout
instead.
The invent layout creates a directory
hierarchy mirroring the relative paths of
repositories on invent.kde.org. For example
source/kde/applications/kate in the
metadata layout would be
source/utilities/kate using the invent
layout instead. This layout only affects
KDE projects. It is a good choice for people
starting out with kdesrc-build.
Finally, the metadata layout is the same as
the old default behaviour. This layout
organises KDE projects according to the
project paths specified in the project
metadata for these modules. This is a good
choice if you want a directory layout which
tracks with certain KDE processes, but note
that this path is therefore not always stable.
As a result, kdesrc-build may abandon an
old copy of the repository and clone a new
one for a project due to changes in the
project metadata.
Related command-line option:
--directory-layout value

48

https://invent.kde.org/

kdesrc-build Script Manual

generate-vscode-project-config

Type Boolean
Default value False

Module setting overrides global
Set this option to true to make
kdesrc-build create VS Code project files
(.vscode directory) in the module source
directory.
The .vscode folder will be created in the
project source directory, only if it does not
already exist. The configurations will
enable the use of LSP, building, debugging,
and running the project from within VS
Code.
The configuration also recommends
extensions to install that are useful for
working on most KDE projects.
Related command-line option:
--generate-vscode-project-config,
--no-generate-vscode-project-config

include-dependencies

Type Boolean
Default value True

Controls if kdesrc-build will include known
dependencies of this module in its build,
without requiring you to mention those
dependencies (even indirectly).

NOTE
This option only works for kde-project-base
d modules, and requires that the metadata ma-
intained by the KDE developers is accurate for
your selected branch-group.

This is to support building applications that
need versions of Qt™ or Plasma more
recent than supported on common
operating systems.
Related command-line option:
--include-dependencies (or -d),
--no-include-dependencies (or -D)

install-after-build

Type String
Default value True

This option is used to install the package
after it successfully builds. You can also use
the --no-install command line flag.
Related command-line option:
--install-after-build, --no-install-after-build

49

kdesrc-build Script Manual

install-dir

Type String
Default value ~/kde/usr

This option controls where to install the
module after it is built. If you change this to
a directory needing root access, you may
want to read about the make-install-prefix
option as well.
Changing this option for specific module
allows you to install it to a different
directory than where the KDE Platform
libraries are installed, such as if you were
using kdesrc-build only to build
applications.
You can use ${MODULE} or $MODULE in the
path to have them expanded to the
module’s name.
Related command-line option:
--install-dir path

libname

Type String
Default value Auto detected

Set this option to change the default name
of the installed library directory inside
${install-dir} and ${qt-install-dir}. On many
systems this is either ˝lib˝ or ˝lib64˝.
Auto-detection is attempted to set the
correct name by default, but if the guess is
wrong then it can be changed with this
setting.
Related command-line option: --libname
value

libpath

Type String
Set this option to set the environment
variable LD_LIBRARY_PATH while building.
You cannot override this setting in a
module option. The default value is blank,
but the paths ${install-dir}/$LIBNAME
and ${qt-install-dir}/$LIBNAME are
automatically added. You may use the tilde
(~) for any paths you add using this option.
Related command-line option: --libpath
path

log-dir

Type String
Use this option to change the directory used
to hold the log files generated by the script.
Related command-line option: --log-dir
path

50

kdesrc-build Script Manual

make-install-prefix

Type String
Set this variable to a space-separated list,
which is interpreted as a command and its
options to precede the make install
command used to install modules. This is
useful for installing packages with Sudo for
example, but please be careful while
dealing with root privileges.
Related command-line option:
--make-install-prefix value

make-options

Type String
Set this variable in order to pass command
line options to the make command. This is
useful for programs such as distcc or
systems with more than one processor core.
Note that not all supported build systems
use make. For build systems that use ninja
for build (such as the Meson build system),
see the ninja-options setting.
Related command-line option:
--make-options value

manual-build

Type Boolean
Default value False

Set the option value to true to keep the
build process from attempting to build this
module. It will still be kept up-to-date
when updating from Git. This option is
exactly equivalent to the --no-build
command line option.

manual-update

Type Boolean
Default value False

Set the option value to true to keep the
build process from attempting to update
(and by extension, build or install) this
module. If you set this option for a module,
then you have essentially commented it out.

51

https://github.com/distcc/distcc

kdesrc-build Script Manual

ninja-options

Type String
Set this variable in order to pass command
line options to the ninja build command.
This can be useful to enable ‘verbose’
output or to manually reduce the number of
parallel build jobs that ninja would use.

NOTE
Note that this setting only controls ninja whe-
n used by kdesrc-build. The Qt™ ‘webengine’
module uses ninja indirectly, but only officially
supports being built by make. In this situatio-
n, you can set NINJAFLAGS as a way to have
make pass the appropriate flags when it later
calls ninja, by using make-options.

options qtwebengine
Restrict make and ninja to using no more than 6 separate compile jobs even
when more CPU is available, to avoid running out of memory
make-options -j6 NINJAFLAGS=-j6

end options

Related command-line option:
--ninja-options value

52

kdesrc-build Script Manual

override-build-system

Type String
Default value Auto detected
Valid values KDE, Qt, qmake, generic, autotools, meson
Available since 1.16

Normally kdesrc-build will detect the
appropriate build system to use for a
module after it is downloaded. This is done
by checking for the existence of specific files
in the module’s source directory.
Some modules may include more than one
required set of files, which could confuse
the auto-detection. In this case you can
manually specify the correct build type.
Currently supported build types that can be
set are:

KDE

Used to build KDE modules. In
reality it can be used to build almost
any module that uses CMake but it is
best not to rely on this.

Qt

Used to build the Qt™ library itself.

qmake

Used to build Qt™ modules that use
qmake-style .pro files.

generic

Used to build modules that use plain
Makefiles and that do not require any
special configuration.

autotools

This is the standard configuration tool
used for most Free and open-source
software not in any of the other
categories.

meson

This is a relatively new tool gaining
popularity as a replacement for the
autotools and may be required for
some non-KDE modules.

Related command-line option:
--override-build-system value

53

https://mesonbuild.com

kdesrc-build Script Manual

purge-old-logs

Type Boolean
Default value True

This option controls whether old log
directories are automatically deleted or not.
Related command-line option:
--purge-old-logs, --no-purge-old-logs

qmake-options

Type String
Available since 1.16

Any options specified here are passed to
the qmake command, for modules that use
the qmake build system. For instance, you
can use the PREFIX=/path/to/qt option
to qmake to override where it installs the
module.
Related command-line option:
--qmake-options value

qt-install-dir

Type String
This option controls where to install qt
modules after build. If you do not specify
this option, kdesrc-build will assume that
Qt™ is provided by the operating system.
Related command-line option:
--qt-install-dir path

remove-after-install

Type String
Valid values none, builddir, all
Default value none

If you are low on hard disk space, you may
want to use this option in order to
automatically delete the build directory (or
both the source and build directories for
one-time installs) after the module is
successfully installed.
Possible values for this option are:

• none - Do not delete anything.

• builddir - Delete the build directory, but
not the source.

• all - Delete both the source code and
build directory.

Note that using this option can have a
significant detrimental impact on both your
bandwidth usage (if you use all) and the
time taken to compile KDE software, since
kdesrc-build will be unable to perform
incremental builds.
Related command-line option:
--remove-after-install value

54

kdesrc-build Script Manual

repository

Type String
Available since 1.10

This option is used to specify the Git
repository to download the source code for
the module. Qt™ (and therefore qt) would
need this option, as well as various KDE
modules that are in the process of
conversion to use Git.

revision

Type String
Available since 1.16

If this option is set to a value other than 0
(zero), kdesrc-build will force the source
update to bring the module to the exact
revision given, even if options like branch
are in effect. If the module is already at the
given revision then it will not be updated
further unless this option is changed or
removed from the configuration.
Related command-line option: --revision
id

run-tests

Type Boolean
Default value False

If set to true, then the module will be built
with support for running its test suite, and
the test suite will be executed as part of the
build process. kdesrc-build will show a
simple report of the test results. This is
useful for developers or those who want to
ensure their system is setup correctly.
Related command-line option: --run-tests,
--no-run-tests

set-env

Type String
This option accepts a space-separated set of
values, where the first value is the
environment variable to set, and the rest of
the values is what you want the variable set
to. For example, to set the variable RONALD
to McDonald, you would put in the
appropriate section this command:

set-env RONALD McDonald

This option is special in that it can be
repeated without overriding earlier set-env
settings in the same section of the
configuration file. This way you can set
more than one environment variable per
module (or globally).

55

kdesrc-build Script Manual

source-dir

Type String
Default value ~/kde/src

This option is used to set the directory on
your computer to store the KDE Git sources
at. You may use the tilde (~) to represent
the home directory if using this option.
Related command-line option: --source-dir
path

stop-on-failure

Type Boolean
Default value True

Setting this option to false allows the
script to continue execution after an error
occurs during the build or install process.
Related command-line option:
--stop-on-failure, --no-stop-on-failure

tag

Type String
Available since 1.16

Use this option to download a specific
release of a module.
Note: The odds are very good that you do
not want to use this option. KDE releases
are available in tarball form from the KDE
download site.
Related command-line option: --tag value

use-clean-install

Type Boolean
Default value False
Available since 1.12

Set this option to true in order to have
kdesrc-build run make uninstall directly
before running make install.
This can be useful in ensuring that there are
not stray old library files, CMake metadata,
etc. that can cause issues in long-lived KDE
installations. However this only works on
build systems that support make uninstall.
Related command-line option:
--use-clean-install, --no-use-clean-install

Table 4.2: All scopes (module, module-set and global) options

These options do not require any value (except ˝filter-out-phases˝). They are applied if they are
presented in a section.

Option name Scope

no-src global
module
module-set

56

https://download.kde.org/
https://download.kde.org/

kdesrc-build Script Manual

no-install global
module
module-set

no-tests global
module
module-set

no-build global
module
module-set

build-only global
module
module-set

install-only global
module
module-set

uninstall global
module
module-set

filter-out-phases global
module
module-set

Table 4.3: Phase selection options

Option name Scope

ignore-modules global
module-set

use-modules module-set
Table 4.4: Modules selection options

57

kdesrc-build Script Manual

Chapter 5

Command Line Options and
Environment Variables

5.1 Command Line Usage

kdesrc-build is designed to be run as follows:

kdesrc-build [--options...] [modules to build...]

If no modules to build are specified on the command line, then kdesrc-build will build all mod-
ules defined in its configuration file, in the order listed in that file (although this can be modified
by various configuration file options).

5.1.1 Commonly used command line options

The full list of command line options is given in Section 5.3. The most-commonly used options
include:

--pretend (or -p)
This option causes kdesrc-build to indicate what actions it would take, without actually
really implementing them. This can be useful to make sure that the modules you think you
are building will actually get built.

--refresh-build
This option forces kdesrc-build to build the given modules from an absolutely fresh start
point. Any existing build directory for that module is removed and it is rebuilt. This option
is useful if you have errors building a module, and sometimes is required when Qt™ or
KDE libraries change.

--no-src
This option skips the source update process. You might use it if you have very recently
updated the source code (perhaps you did it manually or recently ran kdesrc-build) but
still want to rebuild some modules.

--no-build
This option is similar to --no-src above, but this time the build process is skipped.

58

kdesrc-build Script Manual

5.1.2 Specifying modules to build

In general, specifying modules to build is as simple as passing their module name as you defined
it in the configuration file. You can also pass modules that are part of a module set, either as
named on use-modules, or the name of the entire module set itself, if you have given it a name.

In the specific case of module sets based against the KDE project database, kdesrc-build will ex-
pand module name components to determine the exact module you want. For example, kdesrc-
build’s KDE project entry locates the project in extragear/utils/kdesrc-build. You could spec-
ify any of the following to build kdesrc-build:

% kdesrc -build +extragear/utils/kdesrc -build
% kdesrc -build +utils/kdesrc -build
% kdesrc -build +kdesrc -build

NOTE
The commands in the previous example preceded the module-name with a +. This forces the module
name to be interpreted as a module from the KDE project database, even if that module hasn’t been
defined in your configuration file.

Be careful about specifying very generic projects (e.g. extragear/utils by itself), as this can lead
to a large amount of modules being built. You should use the --pretend option before building
a new module set to ensure it is only building the modules you want.

5.2 Supported Environment Variables

kdesrc-build does not use environment variables. If you need to set environment variables for
the build or install process, please see the set-env option.

5.3 Supported command-line parameters

5.3.1 Generic

--pretend (or --dry-run or -p)
kdesrc-build will run through the update and build process, but instead of performing any
actions to update or build, will instead output what the script would have done (e.g. what
commands to run, general steps being taken, etc.).

NOTE
Simple read-only commands (such as reading file information) may still be run to make the
output more relevant (such as correctly simulating whether source code would be checked out
or updated).

IMPORTANT
This option requires that some needed metadata is available, which is normally automatically
downloaded, but downloads are disabled in pretend mode. If you’ve never run kdesrc-build
(and therefore, don’t have this metadata), you should run kdesrc-build --metadata-only
to download the required metadata first.

59

kdesrc-build Script Manual

--include-dependencies (or -d), --no-include-dependencies (or -D)
This option causes kdesrc-build to automatically include other KDE and Qt™ modules in
the build, if required for the modules you have requested to build on the command line or
in your configuration file.
The modules that are added are as recorded within the KDE source code management sys-
tem. See Section 2.6.4.
The corresponding configuration file option is include-dependencies.
This option is enabled by default.

--ignore-modules (or -!) module [module ...]

Do not include the modules passed on the rest of the command line in the update/build
process (this is useful if you want to build most of the modules in your configuration file
and just skip a few).
Note that this option does not override ignore-modules config option in global section.
Instead, it appends it.

--run (or --start-program) [-e|--exec name] [-f|--fork] program [parameters ...]

This option interprets the next item on the command line as a program to run, and kdesrc-
build will then finish reading the configuration file, source the prefix.sh to apply environ-
ment variables, and then execute the given program.

--revision id

This option causes kdesrc-build to checkout a specific numbered revision for each Git mod-
ule, overriding any branch, tag, or revision options already set for these modules.
This option is likely not a good idea, and is only supported for compatibility with older
scripts.

--delete-my-patches, --no-delete-my-patches
This option is used to let kdesrc-build delete source directories that may contain user data,
so that the module can be re-downloaded. This would normally only be useful for KDE
developers (who might have local changes that would be deleted).
You should not use this option normally, kdesrc-build will prompt to be re-run with it if it
is needed.

--delete-my-settings, --no-delete-my-settings
This option is used to let kdesrc-build overwrite existing files which may contain user data.
This is currently only used for xsession setup for the login manager. You should not use
this option normally, kdesrc-build will prompt to be re-run with it if it is needed.

--<option-name> value

You can use this option to override an option in your configuration file for every module.
For instance, to override the log-dir option, you would do: --log-dir /path/to/dir.

NOTE
This feature can only be used for option names already recognized by kdesrc-build, that are not
already supported by relevant command line options. For example the async configuration file
option has specific --async and --no-async command line options that are preferred by kdesrc-
build.

--set-module-option-value <module-name>,<option-name>,<option-value>

You can use this option to override an option in your configuration file for a specific mod-
ule.

60

kdesrc-build Script Manual

5.3.2 Resuming and stopping

--resume-from (or --from or -f) module
This option is used to resume the build starting from the given module. You should not
specify other module names on the command line.

NOTE
If you want to avoid source updates when resuming, simply pass --no-src in addition to the
other options.

See also: --resume-after and Section 6.3.6.1. You would prefer to use this command line
option if you have fixed the build error and want kdesrc-build to complete the build.

--resume-after (or --after or -a) module
This option is used to resume the build starting after the given module. You should not
specify other module names on the command line.

NOTE
If you want to avoid source updates when resuming, simply pass --no-src in addition to the
other options.

See also: --resume-from and Section 6.3.6.1. You would prefer to use this command line op-
tion if you have fixed the build error and have also built and installed the module yourself,
and want kdesrc-build to start again with the next module.

--resume
This option can be used to run kdesrc-build after it has had a build failure.
It resumes the build from the module that failed, using the list of modules that were waiting
to be built before, and disables source and metadata updates as well. The use case is when a
simple mistake or missing dependency causes the build failure. Once you correct the error
you can quickly get back into building the modules you were building before, without
fiddling with --resume-from and --stop-before.

--stop-before (or --until) module
This option is used to stop the normal build process just before a module would ordinarily
be built.
For example, if the normal build list was moduleA, moduleB, moduleC, then --stop-befo
re moduleB would cause kdesrc-build to only build moduleA.

--stop-after (or --to) module
This option is used to stop the normal build process just after a module would ordinarily be
built.
For example, if the normal build list was moduleA, moduleB, moduleC, then --stop-after
moduleB would cause kdesrc-build to build moduleA and moduleB.

--stop-on-failure, --no-stop-on-failure
This option controls if the build will be aborted as soon as a failure occurs. Default behavior
is --stop-on-failure. You may override it if you wish to press on with the rest of the modules
in the build, to avoid wasting time in case the problem is with a single module.
See also the stop-on-failure configuration file option.

61

kdesrc-build Script Manual

--rebuild-failures
Use this option to build only those modules which failed to build on a previous kdesrc-
build run. This is useful if a significant number of failures occurred mixed with successful
builds. After fixing the issue causing the build failures you can then easily build only the
modules that failed previously.

NOTE
Note that the list of ‘previously-failed modules’ is reset every time a kdesrc-build run finishes
with some module failures. However, it is not reset by a completely successful build, so you can
successfully rebuild a module or two and this flag will still work.

5.3.3 Modules information

--query mode
This command causes kdesrc-build to query a parameter of the modules in the build list
(either passed on the command line or read in from the configuration file), outputting the
result to screen (one module per line).
This option must be provided with a ‘mode’, which may be one of the following:

• source-dir, which causes kdesrc-build to output the full path to where the module’s
source code is stored.

• build-dir, which causes kdesrc-build to output the full path to where the module build
process occurs.

• install-dir, which causes kdesrc-build to output the full path to where the module
will be installed.

• project-path, which causes kdesrc-build to output the location of the module within
the hierarchy of KDE source code repositories. See Section 2.6.4 for more information on
this hierarchy.

• branch, which causes kdesrc-build to output the resolved git branch that will be used for
each module, based on the tag, branch and branch-group settings in effect.

• module-set, which causes kdesrc-build to output the name of module-set which con-
tains the module. This can be used to generate zsh autocompletion cache.

• build-system, which causes kdesrc-build to output the name of build system detected
for the module. This can be used to debug build system auto-detection problems, or
when developing tests for specific build systems.

• Any option name that is valid for modules in the configuration file.

For example, the command kdesrc-build --query branch kactivities kdepim
might end up with output like:

kactivities: master
kdepim: master

--dependency-tree
Prints out dependency information on the modules that would be built using a tree for-
mat (recursive). Listed information also includes which specific commit/branch/tag is de-
pended on and whether the dependency would be built. Note: the generated output may
become quite large for applications with many dependencies.

--dependency-tree-fullpath
Prints out dependency information on the modules that would be built using a tree format
(recursive). In fullpath format. Note: the generated output may become quite large for
applications with many dependencies.

--list-installed
Print installed modules and exit. This can be used to generate autocompletion for the --run
option.

62

kdesrc-build Script Manual

5.3.4 Exclude specific action

--no-metadata (or -M)
Do not automatically download the extra metadata needed for KDE git modules. The
source updates for the modules themselves will still occur unless you pass --no-src as well.
This can be useful if you are frequently re-running kdesrc-build since the metadata does not
change very often. But note that many other features require the metadata to be available.
You might want to consider running kdesrc-build with the --metadata-only option one time
and then using this option for subsequent runs.

--no-src (or -S)
Skip contacting the Git server.

--no-build
Skip the build process.

--no-install
Do not automatically install packages after they are built.

5.3.5 Only specific action

--metadata-only

Only perform the metadata download process. kdesrc-build normally handles this auto-
matically, but you might manually use this to allow the --pretend command line option to
work.

--src-only (or -s)
Only perform the source update.

--build-only

Only perform the build process.

--install-only

If this is the only command-line option, it tries to install all the modules contained in log/
latest/build-status. If command-line options are specified after this option, they are all
assumed to be modules to install (even if they did not successfully build on the last run).

--build-system-only

This option causes kdesrc-build to abort building a module just before the make command
would have been run. This is supported for compatibility with older versions only, this
effect is not helpful for the current KDE build system.

5.3.6 Build behavior

--build-when-unchanged (or --force-build), --no-build-when-unchanged (or --n
o-force-build)

Enabling this option explicitly disables skipping the build process (an optimization con-
trolled by the build-when-unchanged option). This is useful for making kdesrc-build run
the build when you have changed something that kdesrc-build cannot check. This option
is enabled by default.

63

kdesrc-build Script Manual

--refresh-build (or -r)
Recreate the build system and make from scratch.

--reconfigure

Run cmake (for KDE modules) or configure (for Qt™) again, without cleaning the build
directory. You should not normally have to specify this, as kdesrc-build will detect when
you change the relevant options and automatically re-run the build setup. This option is
implied if --refresh-build is used.

--install-dir path

This allows you to change the directory where modules will be installed to. This option
implies --reconfigure, but using --refresh-build may still be required.

--generate-vscode-project-config, --no-generate-vscode-project-config
Generate a .vscode directory with configurations for building and debugging in Visual
Studio Code. This option is disabled by default.

5.3.7 Script runtime

--async, --no-async
Enables or disables the asynchronous mode, which can perform the source code updates
and module builds at the same time. If disabled, the update will be performed in its entirety
before the build starts. Disabling this option will slow down the overall process. If you
encounter IPC errors while running kdesrc-build try disabling it, and submitting a bug
report. This option is enabled by default.

--color (or --colorful-output), --no-color (or --no-colorful-output)
Enable or disable colorful output. By default, this option is enabled for interactive termi-
nals.

--nice (or --niceness) value
This value adjusts the computer CPU priority requested by kdesrc-build, and should be in
the range of 0-20. 0 is highest priority (because it is the least ‘nice’), 20 is the lowest priority.
This option defaults to 10.

--rc-file file

The file to read the configuration options from. The default value for this parameter is
kdesrc-buildrc (checked in the current working directory). If this file doesn’t exist, ~/.con
fig/kdesrc-buildrc ($XDG_CONFIG_HOME/kdesrc-buildrc, if $XDG_CONFIG_HOME is set) will
be used instead. See also chapter 4.

5.3.8 Setup

--initial-setup

Has kdesrc-build perform the one-time initial setup necessary to prepare the system for
kdesrc-build to operate, and for the newly-installed KDE software to run.
This includes:

• Installing known dependencies (on supported Linux® distributions)
• Adding required environment variables to ~/.bashrc

This option is exactly equivalent to using --install-distro-packages --generate-config
at the same time. In kdesrc-build (perl implementation) it additionally uses ˝--install-distro-
packages-perl˝.

64

https://bugs.kde.org/
https://bugs.kde.org/

kdesrc-build Script Manual

--install-distro-packages

Installs distro packages (on supported Linux® distributions) necessary to prepare the sys-
tem for kdesrc-build to operate, and for the newly-installed KDE software to run.
See also --initial-setup

--generate-config

Generate the kdesrc-build configuration file.
See also --initial-setup

5.3.9 Verbosity level

--debug

Enables debug mode for the script. Currently, this means that all output will be dumped
to the standard output in addition to being logged in the log directory like normal. Also,
many functions are much more verbose about what they are doing in debugging mode.

--quiet (or --quite or -q)
Do not be as noisy with the output. With this switch only the basics are output.

--really-quiet

Only output warnings and errors.

--verbose
Be very descriptive about what is going on, and what kdesrc-build is doing.

5.3.10 Script information

--version (or -v)
Display the program version.

--help (or -h)
Only display simple help on this script.

--show-info
Displays information about kdesrc-build and the operating system, that may prove useful
in bug reports or when asking for help in forums or mailing lists.

--show-options-specifiers

Print the specifier lines (in the format that GetOpts::Long accepts) for all command line op-
tions supported by the script. This may be used by developers, for example, for generating
zsh autocompletion functions.

65

kdesrc-build Script Manual

Chapter 6

Using kdesrc-build

6.1 Preface

Normally using kdesrc-build after you have gone through chapter 2 is as easy as doing the fol-
lowing from a terminal prompt:

% kdesrc -build

kdesrc-build will then download the sources for KDE, try to configure and build them, and then
install them.
Read on to discover how kdesrc-build does this, and what else you can do with this tool.

6.2 Basic kdesrc-build features

6.2.1 qt support

kdesrc-build supports building the Qt™ toolkit used by KDE software as a convenience to users.
This support is handled by a special module named qt.

NOTE
Qt™ is developed under a separate repository from KDE software located at http://code.qt.io/cgit/qt/ .

In order to build Qt™, you should make sure that the qt-install-dir option is set to the directory
you’d like to install Qt™ to, as described in Section 2.2.

You should then ensure that the qt module is added to your .kdesrc-buildrc, before any other
modules in the file. If you are using the sample configuration file, you can simply uncomment
the existing qt module entry.

Now you should verify the repository option and branch options are set appropriately:

1. The first option is to build Qt™ using a mirror maintained on the KDE source repositories
(no other changes are applied, it is simply a clone of the official source). This is highly
recommended due to occasional issues with cloning the full Qt™ module from its official
repository.
You can set the repository option for the qt module to kde:qt to use this option.

66

http://code.qt.io/cgit/qt/

kdesrc-build Script Manual

2. Otherwise, to build the standard Qt™, set your repository option to git://gitorious
.org/qt/qt.git. Note that you may experience problems performing the initial clone of
Qt™ from this repository.

In both cases, the branch option should be set to master (unless you’d like to build a different
branch).

6.2.2 Standard flags added by kdesrc-build

Nota Bene: this section does not apply to modules for which you have configured a custom
toolchain, using e.g. cmake-toolchain.

To save you time, kdesrc-build adds some standard paths to your environment for you:

• The path to the KDE and Qt™ libraries is added to the LD_LIBRARY_PATH variable automatically.
This means that you do not need to edit libpath to include them.

• The path to the KDE and Qt™ development support programs are added to the PATH variable
automatically. This means that you do not need to edit binpath to include them.

• The path to the KDE-provided pkg-config is added automatically to PKG_CONFIG_PATH. This
means that you do not need to use set-env to add these.

6.2.3 Changing kdesrc-build’s build priority

Programs can run with different priority levels on Operating Systems, including Linux® and
BSD. This allows the system to allocate time for the different programs in accordance with how
important they are.

kdesrc-build will normally allocate itself a low priority so that the rest of the programs on your
system are unaffected and can run normally. Using this technique, kdesrc-build will use extra
CPU when it is available.
kdesrc-build will still maintain a high enough priority level so that it runs before routine batch
processes and before CPU donation programs such as Seti@Home.

To alter kdesrc-build so that it uses a higher (or lower) priority level permanently, then you need
to adjust the niceness setting in the configuration file. The niceness setting controls how ‘nice’
kdesrc-build is to other programs. In other words, having a higher niceness gives kdesrc-build a
lower priority. So to give kdesrc-build a higher priority, reduce the niceness (and vice versa). The
niceness can go from 0 (not nice at all, highest priority) to 20 (super nice, lowest priority).

You can also temporarily change the priority for kdesrc-build by using the --nice command line
option. The value to the option is used exactly the same as for niceness.

NOTE
It is possible for some programs run by the super user to have a negative nice value, with a correspond-
ingly even higher priority for such programs. Setting a negative (or even 0) niceness for kdesrc-build
is not a great idea, as it will not help run time significantly, but will make your computer seem very
sluggish should you still need to use it.

To run kdesrc-build with a niceness of 15 (a lower priority than normal):

% kdesrc -build --nice=15

Or, you can edit the configuration file to make the change permanent:

67

http://setiathome.ssl.berkeley.edu/

kdesrc-build Script Manual

niceness 15

TIP
The niceness option only affects the usage of the computer’s processor(s). One other major affect
on computer performance relates to how much data input or output (I/O) a program uses. In order
to control how much I/O a program can use, modern Linux® operating systems support a similar tool
called ionice. kdesrc-build supports ionice, (but only to enable or disable it completely) using the
use-idle-io-priority option, since kdesrc-build version 1.12.

6.2.4 Installation as the superuser

You may wish to have kdesrc-build run the installation with super user privileges. This may be
for the unrecommended system-wide installation. This is also useful when using a recommended
single user KDE build, however. This is because some modules (especially kdebase) install pro-
grams that will briefly need elevated permissions when run. They are not able to achieve these
permission levels unless they are installed with the elevated permissions.

You could simply run kdesrc-build as the super user directly, but this is not recommended, since
the program has not been audited for that kind of use. Although it should be safe to run the
program in this fashion, it is better to avoid running as the super user when possible.

To take care of this, kdesrc-build provides the make-install-prefix option. You can use this option
to specify a command to use to perform the installation as another user. The recommended way
to use this command is with the Sudo program, which will run the install command as the super
user.
For example, to install all modules using Sudo, you could do something like this:

global
make -install -prefix sudo
Other options

end global

To use make-install-prefix for only a single module, this would work:

module some -module -name
make -install -prefix sudo

end module

6.2.5 Showing the progress of a module build

This feature is always available, and is automatically enabled when possible. What this does is
display an estimated build progress while building a module; that way you know about how
much longer it will take to build a module.

6.3 Advanced features

6.3.1 Partially building a module

It is possible to build only pieces from a single KDE module. For example, you may want to
compile only one program from a module. kdesrc-build has features to make this easy. There are
several complementing ways to do this.

68

kdesrc-build Script Manual

6.3.1.1 Removing directories from a build

It is possible to download an entire repository but have the build system leave out a few direc-
tories when it does the build. This requires that the module uses CMake and that the module’s
build system allows the directory to remove to be optional.

This is controlled with the do-not-compile option.

IMPORTANT
This option requires at least that the build system for the module is reconfigured after changing it. This
is done using the kdesrc-build --reconfigure module command.

To remove the python directory from the kdebindings build process:

module kdebindings
do-not-compile python

end module

NOTE
This function depends on some standard conventions used in most KDE modules. Therefore it may
not work for all programs.

6.3.2 Branching and tagging support for kdesrc-build

6.3.2.1 What are branches and tags?

Git supports managing the history of the KDE source code. KDE uses this support to create
branches for development, and to tag the repository every so often with a new version release.

For example, the KMail developers may be working on a new feature in a different branch in
order to avoid breaking the version being used by most developers. This branch has development
ongoing inside it, even while the main branch (called master) may have development going on
inside of it.
A tag, on the other hand, is a specified point in the source code repository at a position in time.
This is used by the KDE administration team to mark off a version of code suitable for release
and still allow the developers to work on the code.

6.3.2.2 How to use branches and tags

Support for branches and tags is handled by a set of options, which range from a generic request
for a version, to a specific URL to download for advanced users.

The easiest method is to use the branch and tag options. You simply use the option along with
the name of the desired branch or tag for a module, and kdesrc-build will try to determine the
appropriate location within the KDE repository to download from. For most KDE modules this
works very well.

To download kdelibs from KDE 4.6 (which is simply known as the 4.6 branch):

module kdelibs
branch 4.6
other options...

end module

69

kdesrc-build Script Manual

Or, to download kdemultimedia as it was released with KDE 4.6.1:

module kdemultimedia
tag 4.6.1
other options...

end module

TIP
You can specify a global branch value. But if you do so, do not forget to specify a different branch for
modules that should not use the global branch!

6.3.3 Stopping the build early

6.3.3.1 The build normally continues even if failures occur

kdesrc-build normally will update, build and install all modules in the specified list of modules
to build, even if a module fails to build. This is usually a convenience to allow you to update
software packages even if a simple mistake is made in one of the source repositories during
development that causes the build to break.

However you may wish for kdesrc-build to stop what it is doing once a module fails to build and
install. This can help save you time that will be wasted trying to make progress when modules
remaining in the build list will not be able to successfully build either, especially if you have not
ever successfully built the modules in the list.

6.3.3.2 Not stopping early with --no-stop-on-failure

The primary method to do this is to use the --no-stop-on-failure command line option when you
run kdesrc-build.
This option can also be set in the configuration file to make it the normal mode of operation.

It is also possible to tell kdesrc-build at runtime to stop building after completing the current
module it is working on. This is as opposed to interrupting kdesrc-build using a command like
Ctrl+C, which interrupts kdesrc-build immediately, losing the progress of the current module.

IMPORTANT
Interrupting kdesrc-build during a module install when the use-clean-install option is enabled will mean
that the interrupted module will be unavailable until kdesrc-build is able to successfully build the mod-
ule!
If you need to interrupt kdesrc-build without permitting a graceful shutdown in this situation, at least try
to avoid doing this while kdesrc-build is installing a module.

6.3.3.3 Stopping kdesrc-build gracefully when stop-on-failure is false

As mentioned above, it is possible to cause kdesrc-build to gracefully shutdown early once it has
completed the module it is currently working on. To do this, you need to send the POSIX HUP
signal to kdesrc-build

You can do this with a command such as pkill (on Linux® systems) as follows:

$ pkill -HUP kdesrc -build

70

kdesrc-build Script Manual

If done successfully, you will see a message in the kdesrc-build output similar to:

[build] recv SIGHUP , will end after this module

NOTE
kdesrc-build may show this message multiple times depending on the number of individual kdesrc-build
processes that are active. This is normal and not an indication of an error.

Once kdesrc-build has acknowledged the signal, it will stop processing after the current module
is built and installed. If kdesrc-build is still updating source code when the request is received,
kdesrc-build will stop after the module source code update is complete. Once both the update
and build processes have stopped early, kdesrc-build will print its partial results and exit.

6.3.4 How kdesrc-build tries to ensure a successful build

6.3.4.1 Automatic rebuilds

kdesrc-build used to include features to automatically attempt to rebuild the module after a fail-
ure (as sometimes this re-attempt would work, due to bugs in the build system at that time).
Thanks to switching to CMake the build system no longer suffers from these bugs, and so kdesrc-
build will not try to build a module more than once. There are situations where kdesrc-build will
automatically take action though:

• If you change configure-flags or cmake-options for a module, then kdesrc-build will detect that
and automatically re-run configure or cmake for that module.

• If the buildsystem does not exist (even if kdesrc-build did not delete it) then kdesrc-build will
automatically re-create it. This is useful to allow for performing a full --refresh-build for a
specific module without having that performed on other modules.

6.3.4.2 Manually rebuilding a module

If you make a change to a module’s option settings, or the module’s source code changes in a
way kdesrc-build does not recognize, you may need to manually rebuild the module.

You can do this by simply running kdesrc-build --refresh-build module.

If you would like to have kdesrc-build automatically rebuild the module during the next normal
build update instead, you can create a special file. Every module has a build directory. If you
create a file called .refresh-me in the build directory for a module, kdesrc-build will rebuild
the module next time the build process occurs, even if it would normally perform the faster
incremental build.

TIP
By default, the build directory is ~/kde/build/ module / . If you change the setting of the build-dir
option, then use that instead of ~/kde/build.

Rebuild using .refresh-me for module kdelibs:

% touch ~/kdesrc/build/kdelibs/.refresh -me
% kdesrc -build

71

kdesrc-build Script Manual

6.3.5 Changing environment variable settings

Normally kdesrc-build uses the environment that is present when starting up when running
programs to perform updates and builds. This is useful for when you are running kdesrc-build
from the command line.
However, you may want to change the setting for environment variables that kdesrc-build does
not provide an option for directly. (For instance, to setup any required environment variables
when running kdesrc-build on a timer such as Cron) This is possible with the set-env option.

Unlike most options, it can be set more than once, and it accepts two entries, separated by a space.
The first one is the name of the environment variable to set, and the remainder of the line is the
value.
Set DISTRO=BSD for all modules:

global
set-env DISTRO BSD

end global

6.3.6 Resuming builds

6.3.6.1 Resuming a failed or canceled build

You can tell kdesrc-build to start building from a different module than it normally would. This
can be useful when a set of modules failed, or if you canceled a build run in the middle. You can
control this using the --resume-from option and the --resume-after option.

NOTE
Older versions of kdesrc-build would skip the source update when resuming a build. This is no longer
done by default, but you can always use the --no-src command line option to skip the source update.

Resuming the build starting from kdebase:

% kdesrc -build --resume -from=kdebase

Resuming the build starting after kdebase (in case you manually fixed the issue and installed the
module yourself):

% kdesrc -build --resume -after=kdebase

If the last kdesrc-build build ended with a build failure, you can also use the --resume command
line option, which resumes the last build starting at the module that failed. The source and
metadata updates are skipped as well (but if you need these, it’s generally better to use --resume-
from instead).

6.3.6.2 Ignoring modules in a build

Similar to the way you can resume the build from a module, you can instead choose to update
and build everything normally, but ignore a set of modules.

You can do this using the --ignore-modules option. This option tells kdesrc-build to ignore all the
modules on the command line when performing the update and build.

Ignoring extragear/multimedia and kdereview during a full run:

% kdesrc -build --ignore -modules extragear/multimedia kdereview

72

kdesrc-build Script Manual

6.3.7 Changing options from the command line

6.3.7.1 Changing global options

You can change the setting of options read from the configuration file directly from the command
line. This change will override the configuration file setting, but is only temporary. It only takes
effect as long as it is still present on the command line.

kdesrc-build allows you to change options named like option-name by passing an argument on
the command line in the form --option-name=value. kdesrc-build will recognize whether it
does not know what the option is, and search for the name in its list of option names. If it does
not recognize the name, it will warn you, otherwise it will remember the value you set it to and
override any setting from the configuration file.

Setting the source-dir option to /dev/null for testing:

% kdesrc -build --pretend --source -dir=/dev/null

6.3.7.2 Changing module options

It is also possible to change options only for a specific module. The syntax is similar: --module,o
ption-name=value.

This change overrides any duplicate setting for the module found in the configuration file, and
applies only while the option is passed on the command line.

Using a different build directory for the kdeedu module:

% kdesrc -build --kdeedu ,build -dir=temp -build

6.4 Features for KDE developers

6.4.1 SSH Agent checks

kdesrc-build can ensure that KDE developers that use SSH to access the KDE source repository do
not accidentally forget to leave the SSH Agent tool enabled. This can cause kdesrc-build to hang
indefinitely waiting for the developer to type in their SSH password, so by default kdesrc-build
will check if the Agent is running before performing source updates.

NOTE
This is only done for KDE developers using SSH.

You may wish to disable the SSH Agent check, in case of situations where kdesrc-build is mis-
detecting the presence of an agent. To disable the agent check, set the disable-agent-check
option to true.

Disabling the SSH agent check:

global
disable -agent -check true

end global

73

kdesrc-build Script Manual

6.5 Other kdesrc-build features

6.5.1 Changing the amount of output from kdesrc-build

kdesrc-build has several options to control the amount of output the script generates. In any case,
errors will always be output.

Debug level Level name Command line option
0 DEBUG --debug
1 WHISPER --verbose
2 INFO Selected by default
3 NOTE --quiet
4 WARNING --really-quiet
5 ERROR No way to select

Table 6.1: Table of debug levels

6.5.2 Color output

When being run from Konsole or a different terminal, kdesrc-build will normally display with
colorized text.
You can disable this by using the --no-color on the command line, or by setting the colorful-
output option in the configuration file to false.

Disabling color output in the configuration file:

global
colorful -output false

end global

6.5.3 Removing unneeded directories after a build

Are you short on disk space but still want to run a bleeding-edge KDE checkout? kdesrc-build
can help reduce your disk usage when building KDE from Git.

NOTE
Be aware that building KDE does take a lot of space. There are several major space-using pieces
when using kdesrc-build:

1. The actual source checkout can take up a fair amount of space. The default modules take
up about 1.6 gigabytes of on-disk space. You can reduce this amount by making sure that
you are only building as many modules as you actually want. kdesrc-build will not delete
source code from disk even if you delete the entry from the configuration file, so make sure
that you go and delete unused source checkouts from the source directory. Note that the
source files are downloaded from the Internet, you should not delete them if you are actually
using them, at least until you are done using kdesrc-build.
Also, if you already have a Qt™ installed by your distribution (and the odds are good that
you do), you probably do not need to install the qt module. That will shave about 200
megabytes off of the on-disk source size.

74

kdesrc-build Script Manual

2. kdesrc-build will create a separate build directory to build the source code in. Sometimes
kdesrc-build will have to copy a source directory to create a fake build directory. When
this happens, space-saving symlinks are used, so this should not be a hassle on disk space.
The build directory will typically be much larger than the source directory for a module.
For example, the build directory for kdebase is about 1050 megabytes, whereas kdebase’s
source is only around 550 megabytes.
Luckily, the build directory is not required after a module has successfully been built and
installed. kdesrc-build can automatically remove the build directory after installing a mod-
ule, see the examples below for more information. Note that taking this step will make it
impossible for kdesrc-build to perform the time-saving incremental builds.

3. Finally, there is disk space required for the actual installation of KDE, which does not run
from the build directory. This typically takes less space than the build directory. It is harder
to get exact figures however.

How do you reduce the space requirements of KDE? One way is to use the proper compiler flags,
to optimize for space reduction instead of for speed. Another way, which can have a large effect,
is to remove debugging information from your KDE build.

WARNING
You should be very sure you know what you are doing before deciding to remove debugging informa-
tion. Running bleeding-edge software means you are running software which is potentially much more
likely to crash than a stable release. If you are running software without debugging information, it can
be very hard to create a good bug report to get your bug resolved, and you will likely have to re-enable
debugging information for the affected application and rebuild to help a developer fix the crash. So,
remove debugging information at your own risk!

Removing the build directory after installation of a module. The source directory is still kept,
and debugging is enabled:

global
configure -flags --enable -debug
remove -after -install builddir # Remove build directory after ←↩

install
end global

Removing the build directory after installation, without debugging information, with size opti-
mization.

global
cxxflags -Os # Optimize for size
configure -flags --disable -debug
remove -after -install builddir # Remove build directory after ←↩

install
end global

75

kdesrc-build Script Manual

Chapter 7

CMake, the KDE build system

7.1 Introduction to CMake

In March 2006, the CMake program beat out several competitors and was selected to be the build
system for KDE 4, replacing the autotools-based system that KDE had used from the beginning.

A introduction to CMake page is available on the KDE Community Wiki. Basically, instead of
running make -f Makefile.cvs, then configure, then Make, we simply run CMake and then
Make.
kdesrc-build has support for CMake. A few features of kdesrc-build were really features of the
underlying buildsystem, including configure-flags and do-not-compile. When equivalent fea-
tures are available, they are provided. For instance, the equivalent to the configure-flags option
is cmake-options, and the do-not-compile option is also supported for CMake as of kdesrc-build
version 1.6.3.

76

https://community.kde.org/Guidelines_HOWTOs/CMake

kdesrc-build Script Manual

Chapter 8

Credits And License

This documentation is licensed under the terms of the GNU Free Documentation License.

77

fdl-license.html

kdesrc-build Script Manual

Appendix A

KDE modules and source code
organization

A.1 The ‘Module’

KDE groups its software into ‘modules’ of various size. This was initially a loose grouping of
a few large modules, but with the introduction of the Git-based source code repositories, these
large modules were further split into many smaller modules.

kdesrc-build uses this module concept as well. In essence, a ‘module’ is a grouping of code that
can be downloaded, built, tested, and installed.

A.1.1 Individual modules

It is easy to set kdesrc-build to build a single module. The following listing is an example of what
a declaration for a Git-based module would look like in the configuration file.

module kdefoo
cmake -options -DCMAKE_BUILD_TYPE=Debug

end module

TIP
This is a Git-based module since it doesn’t use a repository option. Also, the cmake-options option
is listed as an example only, it is not required.

A.1.2 Groups of related modules

Now most KDE source modules are Git-based KDE, and are normally combined into groups of
modules.
kdesrc-build therefore supports groups of modules as well, using module sets. An example:

module -set base -modules
repository kde-projects
use-modules kde-runtime kde-workspace kde-baseapps

end module -set

78

https://git-scm.com/
https://commits.kde.org/

kdesrc-build Script Manual

TIP
You can leave the module set name (base-modules in this case) empty if you like. This repository
setting tells kdesrc-build where to download the source from, but you can also use a git:// URL.

One special feature of the ‘repository kde-projects’ is that kdesrc-build will automatically in-
clude any Git modules that are grouped under the modules you list (in the KDE Project database).

A.1.3 Module ‘branch groups’

Taking the concept of a group of modules further, the KDE developers eventually found that
synchronizing the names of the Git branches across a large number of repositories was getting
difficult, especially during the development push for the new KDE Frameworks for Qt™ 5.

So the concept of ‘branch groups’ was developed, to allow users and developers to select one of
only a few groups, and allow the script to automatically select the appropriate Git branch.

kdesrc-build supports this feature as of version 1.16-pre2, via the branch-group option.

Example A.1 Example of using branch-group
branch-group can be used in the configuration file as follows:

global
Select KDE Frameworks 5 and other Qt5-based apps
branch -group kf5-qt5

Other global options here ...
end global

module -set
branch -group only works for kde-projects
repository kde-projects

branch -group is inherited from the one set globally , but could
specified here.

use-modules kdelibs kde-workspace
end module -set

kdelibs ’s branch will be "frameworks"
kde-workspace ’s branch will be "master" (as of August 2013)

In this case the same branch-group gives different branch names for each Git module.

This feature requires some data maintained by the KDE developers in a Git repository named kd
e-build-metadata, however this module will be included automatically by kdesrc-build (though
you may see it appear in the script output).

TIP
KDE modules that do not have a set branch name for the branch group you choose will default to an
appropriate branch name, as if you had not specified branch-group at all.

79

kdesrc-build Script Manual

Appendix B

Superseded profile setup procedures

B.1 Setting up a KDE login profile

These instructions cover how to setup the profile required to ensure your computer can login to
your newly-built KDE Plasma desktop. kdesrc-build will normally try to do this automatically
(see Section 2.5.1). This appendix section can be useful for those who cannot use kdesrc-build’s
support for login profile setup. However the instructions may not always be up-to-date, it can
also be useful to consult the kde-env-master.sh.in file included with the kdesrc-build source.

B.1.1 Changing your startup profile settings

IMPORTANT
The .bash_profile is the login settings file for the popular bash shell used by many Linux® distri-
butions. If you use a different shell, then you may need to adjust the samples given in this section for
your particular shell.

Open or create the .bash_profile file in the home directory with your favorite editor, and add
to the end of the file: If you are building the qt module (you are by default), add instead:

PATH=${install -dir}/bin:${qt-install -dir}/bin:$PATH
MANPATH=${qt-install -dir}/doc/man:$MANPATH

Act appropriately if LD_LIBRARY_PATH is not already set.
if [-z $LD_LIBRARY_PATH]; then

LD_LIBRARY_PATH=${install -dir}:/lib:${qt-install -dir}/lib
else

LD_LIBRARY_PATH=${install -dir}:/lib:${qt-install -dir}/lib: ←↩
$LD_LIBRARY_PATH

fi

export PATH MANPATH LD_LIBRARY_PATH

or, if you are not building qt (and are using your system Qt™ instead), add this instead:

PATH=${install -dir}/bin:${qt-install -dir}/bin:$PATH

Act appropriately if LD_LIBRARY_PATH is not already set.

80

kdesrc-build Script Manual

if [-z $LD_LIBRARY_PATH]; then
LD_LIBRARY_PATH=${install -dir}/lib

else
LD_LIBRARY_PATH=${install -dir}/lib:$LD_LIBRARY_PATH

fi

export PATH LD_LIBRARY_PATH

If you are not using a dedicated user, set a different $KDEHOME for your new environment in your
.bash_profile:

export KDEHOME="${HOME}/.kde-git"

Create it if needed
[! -e ~/.kde-git] && mkdir ~/.kde-git

NOTE
If later your K Menu is empty or too crowded with applications from your distribution, you may have to
set the XDG environment variables in your .bash_profile:

XDG_CONFIG_DIRS="/etc/xdg"
XDG_DATA_DIRS="${install -dir}/share:/usr/share"
export XDG_CONFIG_DIRS XDG_DATA_DIRS

B.1.2 Starting KDE

Now that you have adjusted your environment settings to use the correct KDE, it is important to
ensure that the correct startkde script is used as well.

Open the .xinitrc text file from the home directory, or create it if necessary. Add the line:

exec ${install -dir}/bin/startkde

IMPORTANT
On some distributions, it may be necessary to perform the same steps with the .xsession file, also in
the home directory. This is especially true when using graphical login managers such as sddm, gdm,
or xdm.

Now start your fresh KDE: in BSD and Linux® systems with virtual terminal support,
Ctrl+Alt+F1 ... Ctrl+Alt+F12 keystroke combinations are used to switch to Virtual Console 1
through 12. This allows you to run more than one desktop environment at the same time. The
fist six are text terminals and the following six are graphical displays.

If when you start your computer you are presented to the graphical display manager instead, you
can use the new KDE environment, even if it is not listed as an option. Most display managers,
including sddm, have an option to use a ‘Custom Session’ when you login. With this option,
your session settings are loaded from the .xsession file in your home directory. If you have
already modified this file as described above, this option should load you into your new KDE
installation.
If it does not, there is something else you can try that should normally work: Press Ctrl+Alt+F2,
and you will be presented to a text terminal. Log in using the dedicated user and type:

81

kdesrc-build Script Manual

startx -- :1

TIP
You can run the KDE from sources and the old KDE at the same time! Log in using your regular user,
start the stable KDE desktop. Press Ctrl+Alt+F2 (or F1, F3, etc..), and you will be presented with a
text terminal. Log in using the dedicated KDE Git user and type:

startx -- :1

You can go back to the KDE desktop of your regular user by pressing the shortcut key for the already
running desktop. This is normally Ctrl+Alt+F7, you may need to use F6 or F8 instead. To return to
your kdesrc-build-compiled KDE, you would use the same sequence, except with the next function key.
For example, if you needed to enter Ctrl+Alt+F7 to switch to your regular KDE, you would need to
enter Ctrl+Alt+F8 to go back to your kdesrc-build KDE.

82

	Introduction
	A brief introduction to kdesrc-build
	What is kdesrc-build?
	kdesrc-build operation `in a nutshell'

	Documentation Overview

	Getting Started
	Preparing the System to Build KDE
	Setup a new user account
	Ensure your system is ready to build KDE software
	Setup kdesrc-build
	Install kdesrc-build
	Prepare the configuration file
	Manual setup of configuration file

	Setting the Configuration Data
	Using the kdesrc-build script
	Loading project metadata
	Previewing what will happen when kdesrc-build runs
	Resolving build failures

	Building specific modules
	Setting the Environment to Run Your KDEPlasma Desktop
	Automatically installing a login driver
	Adding xsession support for distributions
	Manually adding support for xsession

	Setting up the environment manually

	Module Organization and selection
	KDE Software Organization
	Selecting modules to build
	Module Sets
	The basic module set concept
	Special Support for KDE module sets

	The official KDE module database
	Filtering out KDE project modules

	Getting Started Conclusion

	Script Features
	Feature Overview
	kdesrc-build's build logging
	Logging overview
	Logging directory layout

	Configuring kdesrc-build
	Overview of kdesrc-build configuration
	Layout of the configuration file
	Global configuration
	Module configuration
	Processing of option values
	`options' modules

	Including other configuration files
	Commonly used configuration options

	Table of available configuration options

	Command Line Options and Environment Variables
	Command Line Usage
	Commonly used command line options
	Specifying modules to build

	Supported Environment Variables
	Supported command-line parameters
	Generic
	Resuming and stopping
	Modules information
	Exclude specific action
	Only specific action
	Build behavior
	Script runtime
	Setup
	Verbosity level
	Script information

	Using kdesrc-build
	Preface
	Basic kdesrc-build features
	qt support
	Standard flags added by kdesrc-build
	Changing kdesrc-build's build priority
	Installation as the superuser
	Showing the progress of a module build

	Advanced features
	Partially building a module
	Removing directories from a build

	Branching and tagging support for kdesrc-build
	What are branches and tags?
	How to use branches and tags

	Stopping the build early
	The build normally continues even if failures occur
	Not stopping early with --no-stop-on-failure
	Stopping kdesrc-build gracefully when stop-on-failure is false

	How kdesrc-build tries to ensure a successful build
	Automatic rebuilds
	Manually rebuilding a module

	Changing environment variable settings
	Resuming builds
	Resuming a failed or canceled build
	Ignoring modules in a build

	Changing options from the command line
	Changing global options
	Changing module options

	Features for KDE developers
	SSH Agent checks

	Other kdesrc-build features
	Changing the amount of output from kdesrc-build
	Color output
	Removing unneeded directories after a build

	CMake, the KDE build system
	Introduction to CMake

	Credits And License
	KDE modules and source code organization
	The `Module'
	Individual modules
	Groups of related modules
	Module `branch groups'

	Superseded profile setup procedures
	Setting up a KDE login profile
	Changing your startup profile settings
	Starting KDE

